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a b s t r a c t

This paper addresses the problem of sparse signal recovery from a lower number of

measurements than those requested by the classical compressed sensing theory. This

problem is formalized as a constrained minimization problem, where the objective

function is nonconvex and singular at the origin. Several algorithms have been recently

proposed, which rely on iterative reweighting schemes, that produce better estimates at

each new minimization step. Two such methods are iterative reweighted l2 and l1
minimization that have been shown to be effective and general, but very computation-

ally demanding. The main contribution of this paper is the proposal of the algorithm

WNFCS, where the reweighted schemes represent the core of a penalized approach to the

solution of the constrained nonconvex minimization problem. The algorithm is fast, and

succeeds in exactly recovering a sparse signal from a smaller number of measurements

than the l1 minimization and in a shorter time. WNFCS is very general, since it represents

an algorithmic framework that can easily be adapted to different reweighting strategies

and nonconvex objective functions. Several numerical experiments and comparisons

with some of the most recent nonconvex minimization algorithms confirm the capabil-

ities of the proposed algorithm.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The problem of recovering a sparse signal from a very
low number of linear measurements arises in many real
application fields, ranging from error correction and lost
data recovery, to image acquisition and reconstruction.

According to the recent compressed sensing theory,
this problem can be formalized as a constrained mini-
mization problem, where the objective function induces
sparsity in the solution. More precisely, let x 2 RN be an
unknown vector, whose nonzero components are only K,
with K5N (such a vector will be called K-sparse vector).

The sparse recovery problem can be cast as: given the M �

N measurement matrix F, with MoN, find the K-sparse

vector x 2 RN from its measurements y¼Fx, by solving

min
u2RN

FðuÞ subject to Fu¼ y, ð1Þ

where the sparsity inducing function F(u) allows us to
select, among the infinitely many solutions of the under-
determined linear system Fu¼ y, the desired one.

The most natural choice for F(u) is given by FðuÞ ¼ JuJ0,
since the l0-norm counts the number of nonzero entries of
u. The solution of

min
u2RN

JuJ0 subject to Fu¼ y, ð2Þ

can be evaluated by a combinatorial search over all
possible K-sparse u vectors satisfying Fu¼ y. Even if the
true signal could be recovered from MZ2K random
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measurements, the cost of the combinatorial search is
prohibitive and other strategies must be considered,
which relax the l0-norm minimization into other more
tractable sparsity inducing functions. A common
approach is to use the l1-norm as a convex relaxation of
the l0-norm, and to solve the convex problem

min
u2RN

JuJ1 subject to Fu¼ y: ð3Þ

It has been shown in [4,6] that the above problem
(Eq. (3)) is equivalent to that of Eq. (2) provided that

� every set of K columns of the measurement matrix F
approximatively forms an orthogonal system
(restricted isometry property);
� the measurement number satisfies

M¼O K log
N

K

� �� �
: ð4Þ

(this bound applies to random Gaussian matrices F, for
other bounds see [7,5]).

For a more detailed description of the restricted
isometry property and other bounds on the acquisition
matrix, the interested reader is referred to [6,7].

Many algorithms have been developed to efficiently
solve the problem in Eq. (2) (see [2,3,14,17,20,21,25,26]
and the references therein), but recent results
[8,10,27,22,23] have shown that the use of different
sparsity inducing functions F(u) allows us to exactly and
efficiently recover a sparse signal from a lower number of
measurements than the l1 norm.

In particular, we refer to the nonconvex sparsity
inducing functions, proposed in the most recent litera-
ture, which seem to better reproduce the sparsifying
action of the l0-norm than the l1. Among them, we
mention the lq-norm, for 0oqo1 [9,10,22], and the
log-sum and atan sparsity inducing functions [8,24].
To solve the corresponding nonconvex minimization
problems, numerical strategies have been proposed that
iteratively minimize a convex majorization of the non-
convex objective function. This technique gives rise to the
iterative reweighted algorithms, whose experimental
results assess the improved performance of the noncon-
vex approach with respect to that of l1 minimization, but
at the expense of an increase in the computing time.

The contribution of this paper to the nonconvex
approach is twofold: (a) we propose a novel nonconvex
sparsity inducing function which represents a continuous
relaxation of the l0-norm and whose shape can be
modeled via suitably adjusting a positive parameter; (b)
to solve the corresponding nonconvex constrained mini-
mization problem displayed in Eq. (1) we propose a fast
iterative algorithm, that integrates both the strategy to
overcome the nonconvexity of the objective function and
the adaptive adjustment of the sparsity inducing function
in a penalization approach. The proposed weighted non-
linear filters for compressed sensing (WNFCS) algorithm
represents a general framework, which can successfully
be used with most of the nonconvex sparsity inducing
functions proposed in the literature. Its convergence to a

local minimum of the original nonconvex objective func-
tion is guaranteed by the proof that the descent properties
both of the majorization–minimization (MM) approach
and of the penalization method are still valid in the new
context. WNFCS is fast, since it is much less computa-
tionally demanding than the classical reweighted
approaches, and succeeds in exactly recovering a sparse
signal from a lower number of measurements than the l1
minimization. Moreover, when the available data reach
the amount necessary to the success of the l1 minimiza-
tion, remarkably fewer iterations are required by WNFCS,
than those used by l1 minimization to obtain comparable
reconstruction results. Numerical experiments and com-
parisons with some of the most recent nonconvex mini-
mization algorithms assess the capabilities of the
proposed algorithm.

This paper is organized as follows. In Section 2 we
recall some nonconvex sparsity inducing functions pre-
sented in the literature and we propose a new one.
The classical reweighted approaches to nonconvex mini-
mization are briefly mentioned in Section 3, along with
their strengths and weaknesses. In Section 4 we propose
to use a reweighting scheme as the core of an iterative
penalized procedure, and we analyze its convergence
properties. Section 5 describes the main structure of the
WNFCS algorithm and proposes some improvements that
enhance its efficiency. A large set of numerical experi-
ments is presented in Section 6, confirming the effective-
ness of the proposed strategy. Section 7 closes the work
with some brief conclusions.

2. Nonconvex sparsity inducing functions

The problem of finding different sparsity inducing
alternatives to l0 or l1 minimization has been addressed
in the literature mainly by preserving the separability
properties of both the l0 and l1 norms, thus considering
objective functions that can be expressed as

FðuÞ ¼
XN

i ¼ 1

cð9ui9Þ u 2 RN : ð5Þ

The function c : Rþ�!Rþ is required to provide a func-
tion F(u) that reproduces at best the sparsifying action of
the l0 norm, while still maintaining some good properties
of the l1 norm, such as continuity and differentiability (for
ua0).

Since it has been experimentally shown that the
nonconvex relaxation of the l0 norm outperforms the l1
minimization, several concave sparsity inducing func-
tions, more or less closely resembling the l0 norm, have
been proposed in the recent literature for sparsity recov-
ery. Among them, we mention the lq function, with
0oqo1, proposed in [9] as a smooth relaxation of the
l0, the log-sum sparsity inducing function, successfully
experimented in [8] for several sparse recovery problems,
and the atan function, recently experimented in [16]. All
these sparsity inducing functions are displayed in Table 1,
together with their first derivatives, and are represented
in Fig. 1(a)–(c), for different values of the parameter E for
log-sum and atan, and q for lq. All of them are concave,
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