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In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting
volumetric morphological information than other available methods, thereby improving statistical power on
brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph
spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed
tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric
Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey
matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale
grey matter morphology signatures to describe the transition probability by random walk between the point
pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to
reduce the dimensionality of the grey matter morphology signatures and generate the internal structure
features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved
classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features
computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild
cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The
multi-scale and physics based volumetric structure feature may bring stronger statistical power than some
traditional methods for MRI-based grey matter morphology analysis.

1. Introduction Fischl and Dale, 2000; Jones et al., 2000; Miller et al., 2000; Kabani

et al., 2001; Sowell et al., 2004; Chung et al., 2005; Kochunov et al.,

A multitude of morphometric studies using magnetic resonance
imaging (MRI) have examined the brain structural marker changes
associated with Alzheimer's disease (AD), including cortical atrophy,
hippocampal atrophy or ventricular enlargement, which may serve as
indicative signs of early diagnosis of AD. Despite evidence that medial
temporal atrophy is associated with AD progression, the evaluation of
medial temporal atrophy is still not sufficiently accurate on its own to
serve as a definitive diagnostic specification for the clinical diagnosis of
AD at the mild cognitive impairment (MCI) stage (Frisoni et al., 2010).
Missing at this time is some structural features which are able to
capture subtle grey matter morphometry differences between different
clinical groups and thus have a high discriminant power. For instance,
the thickness of cortex is an important feature which has been applied
to detect localized anatomical differences (MacDonald et al., 2000;

2012). At present, there are two different computational paradigms on
cerebral cortical thickness estimation, with methods generally classi-
fied as either surface or voxel based (Clarkson et al., 2011; Jones et al.,
2000; Fischl and Dale, 2000). Besides, there is another line of research
that has been focused on grey matter density (GMD) (e.g. Wright et al.,
1995; Ashburner and Friston, 2000; Thompson et al., 2003; Sowell
et al., 1999). Basically, GMD can be defined as the proportion of voxels
classified as grey matter falling within a sphere centered at some points
on registered cortical surfaces (Thompson et al., 2004). Prior research
(e.g. Narr et al., 2004) has shown that GMD is highly correlated with
cortical thickness measures. However, the main disadvantages of
current cortical thickness estimation methods are either computation
complexity on constantly correcting the weights of various evolutionary
parameters or inaccuracy on the discrete grid. In addition, all measured
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distances are unitary distances between boundary surface points and
they indicate only global trends and cannot measure topological
variations (e.g., the local topological characteristics along the stream-
lines are not studied).

In this paper, we propose a diffusion geometry method to obtain
multi-scale intrinsic grey matter morphology signatures (GMMS). This
class of methods offers the advantages of inelastic deformation
invariance and robustness to topological noise. Mathematically, diffu-
sion kernels (Coifman et al., 2005) express the transition probability by
random walk of time t, r > 0. It allows for defining a scale space of
kernels with the scale parameter t. Such heat kernel-based spectral
analysis induces a robust and multi-scale metric to compare different
shapes and has strong theoretical guarantees. It has achieved great
success in machine learning, computer vision and medical imaging
research (Coifman et al., 2005; Reuter et al., 2006; Nain et al., 2007; Yu
et al., 2007; Sun et al., 2009; Lombaert et al., 2013). Some prior work
(Rustamov, 2011) studied volumetric heat kernel but their work mainly
relied on regular grid mesh, thus suffering from the limited grid
resolution which cannot precisely characterize the curved cortical
surfaces from MR images. In contrast, we model the grey matter
structure by tetrahedral meshes. Based on the volumetric Laplace-
Beltrami operator (Shi et al., 2015; Wang et al., 2015; Wachinger et al.,
2015; Wang and Wang, 2015), we introduce multi-scale heat kernel
shape descriptors to depict the heat-transfer probability by random
walk between some pre-determined boundary point pairs (Wang et al.,
2015) and obtain sub-voxel numerical accuracy. The defined shape
features rely upon a solid theoretical background and are robust to
noise. Our work may provide accurate quantitative measures of grey
matter morphology changes which are important for a variety of
neuroimaging studies.

In our work, a new set of morphological descriptors are introduced
to describe the grey matter morphology changes. They depend on heat
transmission time and are also influenced by the topological properties
on the heat transmission paths. Following that, a point distribution
model (PDM) is applied to reduce the feature dimensionality. To
further reduce feature dimension and improve classification accuracy,
we adopt a sparse learning (Hastie et al., 2015) approach, sparse linear
discriminant analysis (Sparse LDA) (Clemmensen et al., 2011), which
is built upon a solid theoretical foundation and has demonstrated its
strong practical values in imaging research. Combining heat kernel
shape features with sparse LDA, we hypothesize that our framework
may provide robust, informative and biologically meaningful grey
matter morphology measures, and therefore, we may make an im-
portant advancement towards a holistic cortical thickness descriptor.
We tested our hypothesis on the Alzheimer' s Disease Neuroimaging
Initiative (ADNI) dataset. We studied the classification of AD and its
prodromal stage, i.e. mild cognitive impairment (MCI), comparing our
new method to cortical thickness feature estimated by FreeSurfer
software (Fischl et al., 1999a).

2. Methods
2.1. Definitions

2.1.1. Heat operator and heat kernel
The heat kernel diffusion on differentiable manifold M with
Riemannian metric is governed by the following heat equation:

af (x, 1)
ot 1

where f (x, ) is the heat distribution of the volume at the given time.
Assuming an initial heat distribution F: M — R, let H,(F) denotes the
heat distribution at time t, and lim,_oH,(F) = F. H(t) is called the heat
operator. Both 2y, and H; share the same eigenvectors, and if A; is an
eigenvalue of Ay, then e~*' is an eigenvalue of H, corresponding to the
same eigenvector.

Ay fx, 1) =
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For any compact Riemannian manifold, there exists a function
L(x,y): RT X M x M - R, satisfying the formula

HF@= [ LG y)F 0y @
where dy is the volume form at y € M. The minimum function / (x, y)
that satisfies Eq. (2) is called the heat kernel (Coifman et al., 2005). It
can be explained as the amount of heat that is transferred from x to y in
time t given a unit heat source at x. In other words, /;(x, -) = H;(5;)
where 6, is the Direc delta function at x: §,(z) = 0 for any z # x and
J,6@=1

According to the theory of the spectral analysis, for compact M, the
heat kernel has the following eigen-decomposition heat diffusion
distance:

Li(x, y) = ) eigh () ()

i=0

3)

where A; and ¢; are the i"* eigenvalues and eigenvectors of the Laplace-
Beltrami operator, respectively. The heat kernel /, (x, y) can be inter-
preted as the transition density function of the Brownian motion on the
manifold (Sun et al., 2009).

2.1.2. Laplace-beltrami operator

Let f be a real-valued function, with fe C?, defined on a
Riemannian manifold M (differentiable manifold with Riemannian
metric). The Laplace-Beltrami Operator A is:

Af = div(gradf) @

with grad f the gradient of f and div the divergence on the manifold.
The Laplace-Beltrami operator is a linear differential operator. It can
be calculated in local coordinates. In the non-Euclidean case for a
Riemannian metric, the Laplacian eigenvalue problem is given by

Af = —if )

Since the Laplace-Beltrami operator is self-adjoint and semi-positive
definite (Rosenberg, 1997), it admits an orthonormal eigensystem
B:=(1;¢,), which is a basis of the space of square integrable function,
with Ag, = 4;¢;, Ao < 4 < ...<4; < ...<co. Detailed treatments on har-
monic map, heat kernel and the Laplace-Beltrami operators can be
found in (Schoen and Yau, 1997; Rosenberg, 1997). There are also
intensive studies on discrete harmonic map and Laplace-Beltrami
operator (e.g. Pinkall and Polthier, 1993; Wang et al., 2004a;
Coifman et al., 2005; Levy, 2006; Reuter et al., 2006).

2.1.3. Discrete volumetric laplace-beltrami operator

The solution to Eq. (5) on volume can be approximated by a
piecewise linear function f: 7 — R over a Tetrahedralization 7~ with
vertices P: p,, u = 1,...,n, n is the vertex number in a tetrahedron. In
this work, we propose to refine our prior discrete Laplace-Beltrami
operator definition (Wang et al., 2015) by using a normalization factor,
which takes into account the volume of all tetrahedra at each vertex.
The lumped discrete Laplace-Beltrami operators can be represented as:

1
A (p) = — >k (f(B) = (P))

U veN (u)

(6)

where N(u) represents the index set of the 1-ring of the vertices p,,, i.e.,
the indices of all neighbors connected to p,, by an edge. The normal-
ization factor, which takes into account the total tetrahedral volume
a(u) of all tetrahedra at vertex u, is defined as d, = a(u)/4. We define
the vector f = [f (p,,....f (p,)]" of the function values at the vertices, the
weighted adjacency matrix K = (k,,,) (our definition of k,, will be
discussed in Section 2.2.3) and the diagonal matrix W = diag (wy, ..., wy)
which contains the diagonal elements w, = X,en k. Then the stiff-
ness matrix can be defined as A = W — K,
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