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A B S T R A C T

A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be
highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant
errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it
is not clear that, out of a large number of options, which methods are robust against variability in the temporal
dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with
heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different
analysis methods’ performance against heterogeneous BOLD responses. Evaluations are carried out within the
general linear model (GLM) framework and consist of standard basis sets as well as independent component
analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used
GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD
responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse
response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are
optimal for good balance between detection and characterization, while the 1st order Fourier basis set
(coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection
and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data.

1. Introduction

Reliable detection of evoked blood oxygenation level dependent
(BOLD) responses is critical to estimate the brain activation maps in
fMRI studies. In addition, there has been an increasing interest in
characterizing temporal features such as onset and duration to
investigate activation timing of BOLD responses across brain regions
and experimental conditions (Byers et al., 2015; Handwerker et al.,
2012; Lindquist et al., 2009; Liu et al., 2015; Weitz et al., 2014).
However, accurate detection and characterization remain challenging
in scenarios where BOLD responses exhibit a large variability in the
temporal dynamics (Aguirre et al., 1998; Gonzalez-Castillo et al., 2012;
Handwerker et al., 2004), such as in studies of disease states (Amemiya
et al., 2012; Matthews et al., 2006), and in small animal studies with
anesthesia (Schlegel et al., 2015; Schroeter et al., 2014; Williams et al.,
2010). In these cases, commonly used general linear model (GLM)

(Friston et al., 1994) with a canonical hemodynamic response function
(HRF) is often not the best choice. For example, in an fMRI study of
motor control in human ischemic patients, GLM with a canonical HRF
failed to detect motor cortex activation (Amemiya et al., 2012). It also
failed to estimate temporal features of the BOLD responses (Calhoun
et al., 2004; Lindquist et al., 2009). In these studies, onset and duration
differences between experimental conditions were misinterpreted as
differences in the amplitudes of evoked BOLD responses. These
substantial detection and characterization errors stress the importance
of proper choice of analysis methods.

Nevertheless, it is currently not clear which methods are optimal in
scenarios of heterogeneous BOLD responses. This is partially due to the
large set of analysis approaches available, yet few comprehensive
evaluations have been conducted, especially in block-design studies.
Over the past decades, dozens of methods have been proposed. Among
the most accessible ones are those implemented in widely available
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software packages, such as GLM with the canonical basis set (Calhoun
et al., 2004; Friston et al., 1998; Henson et al., 2002; Steffener et al.,
2010), the gamma basis set, the Fourier basis set, the finite impulse
response (FIR) basis set, and the B-spline basis set (Genovese, 2000).
Likewise, optimized methods for specific datasets have been consid-
ered. For example, colleagues have developed specific basis sets to
estimate onset delays (Liao et al., 2002), implemented transient plus
sustained models to detect transient responses in block-design experi-
ments (Giraud et al., 2000; Harms and Melcher, 2002; Seifritz et al.,
2002), and designed basis sets that incorporate prior information of
BOLD responses (Woolrich et al., 2004). Additionally, data-driven
methods are employed as they place few assumptions on the hemody-
namic responses. Commonly used methods include independent
component analysis (ICA) (Beckmann and Smith, 2004; Esposito
et al., 2002; McKeown et al., 1998a; McKeown et al., 1998b), principal
component analysis (PCA) (Backfrieder et al., 1996; Sychra et al.,
1994), and fuzzy clustering analysis (Baumgartner et al., 2000; Chuang
et al., 1999; Wismüller et al., 2002).

In block-design studies, only data-driven methods, such as ICA,
PCA, and unsupervised clustering, have been compared on their
detection and characterization performance (Baumgartner et al.,
2000; Erhardt et al., 2011; Meyer-Baese et al., 2004), but not the
more widely-used model-based approaches. In contrast, another study
assessed several HRF models’ ability to estimate HRF parameters from
a block-design experiment, but did not examine detection performance
(Shan et al., 2014). More often, comparisons were not conducted as the
main purpose of the study, but to support the introduction of new
approaches to analyze fMRI data (Calhoun et al., 2001a; Harms and
Melcher, 2003; McKeown et al., 1998b; Moritz et al., 2003), or to
highlight the heterogeneity of the observed BOLD responses (Amemiya
et al., 2012; Gonzalez-Castillo et al., 2012; Pujol et al., 2009; Schlegel
et al., 2015). As a result, it is difficult to derive a comprehensive
evaluation from the literature, due to the limited range of statistical
methods employed and/or assessment conducted in each study.

Here, we investigate the robustness of six widely available methods
against heterogeneous BOLD responses in block-design studies. Given
the fact that the vast majority of methods already incorporate
information about the shape of evoked hemodynamic responses during
the detection stage, we focused not only on each method's detection
performance, but also on their characterization power (Degras and
Lindquist, 2014; Makni et al., 2008). A detailed comparison of state-of-
the-art methods for analyses of heterogeneous BOLD responses is
presented. Evaluations are carried out in the GLM framework and
include standard basis sets as well as ICA. In order to evaluate each
methods’ performance against fMRI data with heterogeneous BOLD
responses, we use data from a recently published optogenetic fMRI
(ofMRI) study of dynamic control of forebrain by central thalamus (Liu
et al., 2015). To further validate each method's performance, we also
use simulated data with varying temporal dynamics. Advantages and
shortcomings of each approach are quantified using receiver operating
characteristic (ROC) analysis and root-mean-square error (RMSE) of
fit. Together, our results aim to provide practical recommendations on
proper methods selection for analyzing block-design fMRI data with
heterogeneous BOLD responses.

2. Methods

2.1. fMRI analysis methods

In this study, a set of six different approaches including model-
based and data-driven methods was evaluated. The same block-design
paradigm was used across methods. It consisted of 30 s baseline,
followed by six 60 s cycles, each consisting of 20 s stimulation and 40 s

rest, unless otherwise noted. To enable comparison across methods, a
single statistical analysis platform is needed. Therefore, the linear
regression platform in Statistical Parametric Mapping (SPM, Wellcome
Trust Center for Neuroimaging) was employed for statistical analysis.
All methods were evaluated by using different sets of regressors within
the same GLM framework. The detailed description of each method is
included as follows:

(i) The canonical basis set was selected from the SPM toolbox as
one of the most commonly used methods. Model orders up to 3 were
included in the evaluation. In the present study, GLM with a single
canonical HRF as basis function is referred to as the 1st order
canonical basis set. GLM with a canonical HRF and its temporal
derivative as basis functions is referred to as the 2nd order canonical
basis set. GLM with a canonical HRF and its temporal and dispersion
derivatives as basis functions is referred to as the 3rd order canonical
basis set. The canonical basis functions were first convolved with the
stimulation paradigm before being used as regressors for the canonical
basis set.

(ii) The gamma basis set was selected from the SPM toolbox as
another widely available method. Model orders up to 4 were investi-
gated. Each order includes a set of K gamma functions of increasing
dispersions as basis functions, where K denotes the model order.
Similar with the canonical basis set, the gamma basis functions were
first convolved with the stimulation paradigm before being used as
regressors for the gamma basis set.

(iii) The FIR basis set was included as one of the most flexible basis
sets. The model order of 3 to 10 was investigated. Each order includes a
set of K contiguous boxcar functions, in which the bin width of each
boxcar function equals T/K, where K denotes the model order, and T
represents the length of each stimulation cycle (60 s). For simplicity,
only results from the odd numbers (e.g., model order of 3, 5, 7, and 9)
are shown in figures. Additionally, we investigated the model order of
20, in which the bin width of each boxcar function equals our image
acquisition interval (3 s), a common practice when employing the FIR
basis set. Unlike the canonical and gamma basis sets, the FIR basis set
was not convolved with the stimulation paradigm before being used as
regressors.

(iv) The B-spline basis set was selected as another popular analysis
method (Genovese, 2000; Schlegel et al., 2015). The model order of 3
to 10 was included in the evaluation. Each order includes a set of K
cubic spline functions created using the program 3dDeconvolve in the
AFNI software package (Cox, 1996; Ward, 2006), where K denotes the
model order. Similar with the FIR basis set, only results from the odd
numbers are shown for simplicity (e.g., model order of 3, 5, 7, and 9),
and the B-spline basis set was not convolved with the stimulation
paradigm before being used as regressors.

(v) The Fourier basis set was selected due to its capability to exploit
the periodic nature of the experimental paradigm and evoked re-
sponses (Bullmore et al., 1996; Pinto et al., 2016). Model orders up to 5
were investigated. Each order includes a set of K sine and K cosine
functions at harmonic frequencies: f1, 2 f1, …, K f1 Hz, where K denotes
the model order, and f1 represents the frequency of repeated stimula-
tion cycles (1/60 Hz). Similar with the FIR and B-spline basis sets, the
Fourier basis set was not convolved with the stimulation paradigm
before being used as regressors.

It is worth noting that, GLM with the 1st order Fourier basis set is
mathematically equivalent with coherence analysis, a frequency-do-
main analysis method that is widely used in periodic block-design
studies (Amemiya et al., 2012; Bandettini et al., 1993; Engel et al.,
1997; Lee et al., 2010), including the ofMRI datasets we utilized in the
present study (Liu et al., 2015). A coherence value was defined as a
ratio of the magnitude of each time series’ Fourier transform (F) at the
frequency of repeated stimulation cycles (f1, 1/60 Hz) and the total
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