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ARTICLE INFO ABSTRACT

In diffusion MRI (dMRI), microscopic diffusion anisotropy can be obscured by orientation dispersion.
Separation of these properties is of high importance, since it could allow dMRI to non-invasively probe
elongated structures such as neurites (axons and dendrites). However, conventional dMRI, based on single
diffusion encoding (SDE), entangles microscopic anisotropy and orientation dispersion with intra-voxel
variance in isotropic diffusivity. SDE-based methods for estimating microscopic anisotropy, such as the neurite
orientation dispersion and density imaging (NODDI) method, must thus rely on model assumptions to
disentangle these features. An alternative approach is to directly quantify microscopic anisotropy by the use of
variable shape of the b-tensor. Along those lines, we here present the ‘constrained diffusional variance
decomposition’ (CODIVIDE) method, which jointly analyzes data acquired with diffusion encoding applied in a
single direction at a time (linear tensor encoding, LTE) and in all directions (spherical tensor encoding, STE).
We then contrast the two approaches by comparing neurite density estimated using NODDI with microscopic
anisotropy estimated using CODIVIDE. Data were acquired in healthy volunteers and in glioma patients.
NODDI and CODIVIDE differed the most in gray matter and in gliomas, where NODDI detected a neurite
fraction higher than expected from the level of microscopic diffusion anisotropy found with CODIVIDE. The
discrepancies could be explained by the NODDI tortuosity assumption, which enforces a connection between
the neurite density and the mean diffusivity of tissue. Our results suggest that this assumption is invalid, which
leads to a NODDI neurite density that is inconsistent between LTE and STE data. Using simulations, we
demonstrate that the NODDI assumptions result in parameter bias that precludes the use of NODDI to map
neurite density. With CODIVIDE, we found high levels of microscopic anisotropy in white matter, intermediate
levels in structures such as the thalamus and the putamen, and low levels in the cortex and in gliomas. We
conclude that accurate mapping of microscopic anisotropy requires data acquired with variable shape of the b-
tensor.
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1. Introduction

Axons and dendrites, collectively referred to as neurites, are
thought to exhibit anisotropic water diffusion (Beaulieu, 2002;
Jespersen et al.,, 2007; Tournier et al., 2011). Diffusion magnetic
resonance imaging (AMRI) thus holds promise to non-invasively infer
information on these structures. Diffusion tensor imaging (DTI) can be
used to quantify diffusion anisotropy on the voxel level (Basser et al.,
1994). However, voxel-level anisotropy is determined not only by the

microscopic anisotropy in neurites, but also by the level of orientation
dispersion that they exhibit (Kroenke et al., 2004; Oouchi et al., 2007;
Vos et al., 2011; Szczepankiewicz et al., 2015). Quantification of neurite
properties from dMRI must thus separate effects of microscopic
anisotropy from orientation dispersion (Kroenke et al., 2004).
Conventional dMRI, based on single diffusion encoding (SDE),
inherently entangles microscopic anisotropy and orientation dispersion
with intra-voxel variance in isotropic diffusivity (Mitra, 1995; Westin
et al., 2016). Microscopic anisotropy was nevertheless estimated with
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good accuracy from SDE data by Jespersen et al. (2010), who also
demonstrated dMRI-based neurite density maps in good agreement
with myelin-stained histology slides. However, the acquisition was
performed on fixed tissue, took 15 h and featured b-values markedly
higher than what is clinically feasible (up to 15 ms/um?). The analysis
also used an extensive model with up to 23 free parameters to capture
both microstructure and orientation information. Even so, the neurite
orientation dispersion and density imaging (NODDI) method was
suggested to enable quantification of neurite density from a 10-minute
only acquisition (Zhang et al., 2012). To achieve this acceleration,
NODDI relies on a much smaller dataset together with model
constraints that connect microscopic anisotropy to diffusional proper-
ties of different water components.

A different approach to imaging microscopic diffusion anisotropy is
to go beyond SDE and use diffusion encoding with variable shape of the
b-tensor (Westin et al., 2016). While conventional SDE yields linear
tensor encoding (LTE), other shapes can be obtained using non-
conventional gradient waveforms. For example, the double diffusion
encoding (DDE) sequence (Cory et al., 1990) yields planar tensor
encoding (PTE), and a number of approaches exist for spherical tensor
encoding (STE) (Wong et al., 1995; Eriksson et al., 2013; Sjolund et al.,
2015). Importantly, STE is sensitive only to the intra-voxel variation in
isotropic diffusivity, and insensitive to anisotropy and orientation
dispersion (Eriksson et al., 2013; Lasic et al., 2014).

Estimation of microscopic anisotropy through this approach has
been performed previously by combining LTE and PTE from DDE
(Ozarslan and Basser, 2008; Jespersen et al., 2013; Lawrenz and
Finsterbusch, 2013). More recent work has shown that data acquired
with variable shape of the b-tensor can be used to estimate the full
diffusion tensor distribution (DTD) (de Almeida Martins and Topgaard
2016), or as in another approach, just the mean diffusion tensor and
the tensor covariance of this DTD (Westin et al., 2016). The tensor
covariance naturally separates variance due to microscopic anisotropy
and intra-voxel variance in isotropic diffusivity (Westin et al., 2016).
These variance components can also be estimated directly by joint
analysis of LTE and STE data (Lasic et al., 2014), using an approach we
now refer to as ‘diffusional variance decomposition’ (DIVIDE)
(Szczepankiewicz et al., 2016a). Here, we introduce a novel method
that we refer to as ‘constrained diffusional variance decomposition’
(CODIVIDE). CODIVIDE is based on the DIVIDE approach (Lasi¢
et al., 2014), but is more similar to NODDI since it employs a model
that features three distinct components. However, the joint analysis of
LTE and STE data allows CODIVIDE to rely on fewer assumptions and
estimate additional parameters compared to NODDI.

NODDI arguably offers a simple method to quantify the neurite
density, and thus the level of microscopic anisotropy, already from
conventional LTE data. However, the model constraints that make this
possible have not been validated experimentally, and the interpretation
of the NODDI parameters has been called into question (Jelescu et al.,
2016). Yet, NODDI has been applied in clinical studies (Kamagata
et al.,, 2015; Wen et al., 2015; Surova et al., 2016), which have
sometimes rendered unintuitive results. For example, Wen et al.
(2015) cautioned against interpreting their finding of a neurite density
contrast within gliomas as actually due to neurites. Since the inter-
pretation of NODDI-based studies rests on the validity of the model
constraints, it is of utmost importance to investigate them in detail.
One way of doing so is to use data obtained with variable shape of the
b-tensor. Since a correct model should be fairly invariant to acquisition
parameters, the NODDI constraints may be validated by testing
whether NODDI results are consistent between e.g. LTE and STE data.

In this work, we compared imaging of neurite density via NODDI
with imaging of microscopic anisotropy via joint analysis of LTE and
STE data using CODIVIDE. Both NODDI and CODIVIDE were applied
to data acquired in the healthy brain and in glioma brain tumors, and
the resulting parameter maps were compared. Furthermore, we in-
vestigated the NODDI model constraints by testing whether the NODDI
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analysis can be extended to and predict STE data. Finally, we simulated
the response in the NODDI and CODIVIDE parameters to variations in
the underlying DTD that may not conform to the model constraints.

2. Theory
2.1. Multi-component modeling of diffusion

Quantitative dMRI uses models that parameterize the diffusion-
weighted MR signal in terms of biophysically relevant features, which
are then estimated as the solution to an inverse problem (Nilsson et al.,
2013a). NODDI and CODIVIDE belong to a class of methods that
model the dMRI signal by separate components with Gaussian diffu-
sion. The diffusion in the components are described by axially
symmetric diffusion tensors with axial and radial diffusivities d;; and
d,, respectively. Here, we characterize these tensors by their isotropic
diffusivity, d;=1/3d,+2/3d,, and their anisotropy, da=(d—-d.)/
(d)j+2d,), according to the formalism of Eriksson et al. (2015).

We define a multi-component signal model common to both
NODDI and CODIVIDE as

S=Y SA(b, by, dix. dax). (¢))

where, for component k, Sy is the non-diffusion attenuated signal
intensity and Ay is the diffusion attenuation given by the properties of
the encoding tensor (b, b,) and the diffusion tensor (dyx, da;). The
concept of describing the diffusion encoding by a tensor with a user-
defined size (b) and anisotropy (b,) is relatively recent (Eriksson et al.,
2015; Westin et al., 2016), and arose due to the use of novel diffusion
sequences that vary the gradient direction between excitation and
image readout (Eriksson et al., 2013; Sjolund et al., 2015; Westin et al.,
2016). For clarity, we note that the conventional b-factor (b) is given by
the trace of the b-tensor, while the anisotropy b, takes values between
—0.5 for a planar tensor and 1 for a stick (or linear) tensor (Eriksson
et al., 2015). We assume axially symmetric b-tensors, whose shapes are
fully described by b and ba.

In our model, we neglect the orientation distributions of anisotropic
components. Rather than to model and estimate these, we employ the
concept of ‘powder averaging’, in which the data is arithmetically
averaged across all encoding directions. This procedure has been
applied frequently in the context of estimating microscopic anisotropy
(Jespersen et al., 2013; Lawrenz and Finsterbusch 2013; Lasi¢ et al.,
2014). It induces complete orientation dispersion, and thus an
orientation invariant signal, provided that a sufficient number of
directions are employed (Szczepankiewicz et al., 2016b). After powder
averaging, the signal attenuation in Eq. 1 is given by

Ai(b, ba, dy, dp) = exp(—bdy[1-badax1)g(Bbdixbadn ), 2)
where

1
s@) = [ expt-ariir = || erf(va). -

and erf(x) is the error function (Lindblom et al., 1977; Callaghan et al.,
1979; Kroenke et al., 2004; Eriksson et al., 2015).

2.2. Overlapping constraints

Several models for diffusion in brain tissue include separate
components for water with microscopically anisotropic diffusion (e.g.
neurites) and water with more isotropic diffusion (e.g. the extracellular
space) (Assaf et al., 2004; Jespersen et al., 2007; Fieremans et al.,
2011). NODDI and CODIVIDE additionally include an isotropic
component (a ‘ball’) with fixed diffusivity to separate cerebrospinal
fluid (CSF) from tissue. Furthermore, NODDI and CODIVIDE assume
that the anisotropic component is described by a linear diffusion tensor
(a ‘stick’), since the small diameters of compartments with anisotropic
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