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A B S T R A C T

Resting-state functional Magnetic Resonance Imaging (R-fMRI) holds the promise to reveal functional
biomarkers of neuropsychiatric disorders. However, extracting such biomarkers is challenging for complex
multi-faceted neuropathologies, such as autism spectrum disorders. Large multi-site datasets increase sample
sizes to compensate for this complexity, at the cost of uncontrolled heterogeneity. This heterogeneity raises new
challenges, akin to those face in realistic diagnostic applications. Here, we demonstrate the feasibility of inter-
site classification of neuropsychiatric status, with an application to the Autism Brain Imaging Data Exchange
(ABIDE) database, a large (N=871) multi-site autism dataset. For this purpose, we investigate pipelines that
extract the most predictive biomarkers from the data. These R-fMRI pipelines build participant-specific
connectomes from functionally-defined brain areas. Connectomes are then compared across participants to
learn patterns of connectivity that differentiate typical controls from individuals with autism. We predict this
neuropsychiatric status for participants from the same acquisition sites or different, unseen, ones. Good choices
of methods for the various steps of the pipeline lead to 67% prediction accuracy on the full ABIDE data, which is
significantly better than previously reported results. We perform extensive validation on multiple subsets of the
data defined by different inclusion criteria. These enables detailed analysis of the factors contributing to
successful connectome-based prediction. First, prediction accuracy improves as we include more subjects, up to
the maximum amount of subjects available. Second, the definition of functional brain areas is of paramount
importance for biomarker discovery: brain areas extracted from large R-fMRI datasets outperform reference
atlases in the classification tasks.

1. Introduction

In psychiatry, as in other fields of medicine, both the standardized
observation of signs, as well as the symptom profile are critical for
diagnosis. However, compared to other fields of medicine, psychiatry
lacks accompanying objective markers that could lead to more refined
diagnoses and targeted treatment (Kapur et al., 2012). Advances in
non-invasive brain imaging techniques and analyses (e.g. Craddock
et al. (2013); Van Essen and Ugurbil (2012)) are showing great promise
for uncovering patterns of brain structure and function that can be
used as objective measures of mental illness. Such neurophenotypes

are important for clinical applications such as disease staging, deter-
mination of risk prognosis, prediction and monitoring of treatment
response, and aid towards diagnosis (e.g. Castellanos et al. (2013)).

Among the many imaging techniques available, resting-state fMRI
(R-fMRI) is a promising candidate to define functional neuropheno-
types (Kelly et al., 2008; Van Essen and Ugurbil, 2012). In particular, it
is non-invasive and, unlike conventional task-based fMRI, it does not
require a constrained experimental setup nor the active and focused
participation of the subject. It has been proven to capture interactions
between brain regions that may lead to neuropathology diagnostic
biomarkers (Greicius, 2008). Numerous studies have linked variations
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in brain functional architecture measured from R-fMRI to behavioral
traits and mental health conditions such as Alzheimer disease (e.g.
Greicius et al. (2004); Chen et al. (2011), Schizophrenia (e.g. Garrity
et al. ; Zhou et al. (2007); Jafri et al. (2008); Calhoun et al. (2011)),
ADHD, autism (e.g. Plitt et al., 2015 and others (e.g. Anderson et al.
2011 ). Extending these findings, predictive modeling approaches have
revealed patterns of brain functional connectivity that could serve as
biomarkers for classifying depression (e.g. Craddock et al.), ADHD (e.g.
Consortium et al.), autism (e.g. Anderson et al. (2011)), and even age
(Dosenbach et al., 2010). This growing number of studies has shown
the feasibility of using R-fMRI to identify biomarkers. However
questions about the readiness of R-fMRI to detect clinically useful
biomarkers remain (Plitt et al., 2015). In particular, the reproducibility
and generalizability of these approaches in research or clinical settings
are debatable. Given the modest sample size of most R-fMRI studies,
the effect of cross-study differences in data acquisition, image proces-
sing, and sampling strategies (Desmond and Glover, 2002; Murphy and
Garavan, 2004; Thirion et al., 2007) has not been quantified.

Using larger datasets is commonly cited as a solution to challenges
in reproducibility and statistical power (Button et al., 2013). They are
considered a prerequisite to R-fMRI-based classifiers for the detection
of psychiatric illness. Recent efforts have accelerated the generation of
large databases through sharing and aggregating independent data
samples (Fair et al., Mennes et al., 2013; Di Martino et al., 2014).
However, a number of concerns must be addressed before accepting
the utility of this approach. Most notably, the many potential sources of
uncontrolled variation that can exist across studies and sites, which
range from MRI acquisition protocols (e.g. scanner type, imaging
sequence, see Friedman et al. (2008)), to participant instructions
(e.g. eyes open vs. closed, see Yan et al. (2013)), to recruitment
strategies (age-group, IQ-range, level of impairment, treatment history
and acceptable comorbidities). Such variation in aggregate samples is

often viewed as dissuasive, as its effect on diagnosis and biomarker
extraction is unknown. It commonly motivates researchers to limit the
number of sites included in their analyses at the cost of sample size.

Cross-validated results obtained from predictive models are more
robust to inhomogeneities: they measure model generalizability by
applying it to unseen data, i. e. , data not used to train the model. In
particular, leave-out cross-validation strategies, which remove single
individuals (or random subsets), are common in biomarkers studies.
However, these strategies do not measure the effect of potential site-
specific confounds. In the present study we leverage aggregated R-
fMRI samples to address this problem. Instead of leaving out random
subsamples as test sets, we left out entire sites to measure performance
in the presence of uncontrolled variability.

Beyond challenges due to inter-site data heterogeneity, choices in
the functional-connectivity data-processing pipeline further add to the
variability of results (Carp, 2012; Yan et al., 2013; Shirer et al.,). While
preprocessing procedures are now standard, the different steps of the
prediction pipeline vary from one study to another. These entail
specifying regions of interest, extracting regional time courses, com-
puting connectivity between regions, and identifying connections that
relate to subject's phenotypes (Craddock et al.,, Richiardi et al., ; Shirer
et al., 2012; Eickhoff et al., 2015).

Lack of ground truth for brain functional architecture undermines
the validation of R-fMRI data-processing pipelines. The use of func-
tional connectivity for individual prediction suggests a natural figure of
merit: prediction accuracy. We contribute quantitative evaluations, to
help settling down on a parameter-free pipeline for R-fMRI. Using
efficient implementations, we were able to evaluate many pipeline
options and select the best method to estimate atlases, extract
connectivity matrices, and predict phenotypes.

To demonstrate that pipelines to extract R-fMRI neuro-phenotypes
can reliably learn inter-site biomarkers of psychiatric status on

Fig. 1. Functional MRI analysis pipeline. Cross-validation schemes used to validate the pipeline are presented above. Intra-site cross-validation consists of randomly splitting the
participants into training and testing sets while preserving the ratio of samples for each site and condition. Inter-site cross-validation consists of leaving out participants from an entire
site as testing set. In the first step of the pipeline, regions of interest are estimated from the training set. The second step consists of extracting signals of interest from all the participants,
which are turned into connectivity features via covariance estimation at the third step. These features are used in the fourth step to perform a supervised learning task and yield an
accuracy score. An example of pipeline is highlighted in red. This pipeline is the one that gives best results for inter-site prediction. Each model is decribed in the section relative to
material and methods.

A. Abraham et al. NeuroImage 147 (2017) 736–745

737



Download English Version:

https://daneshyari.com/en/article/5631540

Download Persian Version:

https://daneshyari.com/article/5631540

Daneshyari.com

https://daneshyari.com/en/article/5631540
https://daneshyari.com/article/5631540
https://daneshyari.com

