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A B S T R A C T

Here we introduce a multivariate framework for characterising longitudinal changes in structural MRI using
dynamical systems. The general approach enables modelling changes of states in multiple imaging biomarkers
typically observed during brain development, plasticity, ageing and degeneration, e.g. regional gray matter
volume of multiple regions of interest (ROIs). Structural brain states follow intrinsic dynamics according to a
linear system with additional inputs accounting for potential driving forces of brain development. In particular,
the inputs to the system are specified to account for known or latent developmental growth/decline factors, e.g.
due to effects of growth hormones, puberty, or sudden behavioural changes etc. Because effects of
developmental factors might be region-specific, the sensitivity of each ROI to contributions of each factor is
explicitly modelled. In addition to the external effects of developmental factors on regional change, the
framework enables modelling and inference about directed (potentially reciprocal) interactions between brain
regions, due to competition for space, or structural connectivity, and suchlike. This approach accounts for
repeated measures in typical MRI studies of development and aging. Model inversion and posterior
distributions are obtained using earlier established variational methods enabling Bayesian evidence-based
comparisons between various models of structural change. Using this approach we demonstrate dynamic
cortical changes during brain maturation between 6 and 22 years of age using a large openly available
longitudinal paediatric dataset with 637 scans from 289 individuals. In particular, we model volumetric changes
in 26 bilateral ROIs, which cover large portions of cortical and subcortical gray matter. We account for (1)
puberty-related effects on gray matter regions; (2) effects of an early transient growth process with additional
time-lag parameter; (3) sexual dimorphism by modelling parameter differences between boys and girls. There is
evidence that the regional pattern of sensitivity to dynamic hidden growth factors in late childhood is similar
across genders and shows a consistent anterior-posterior gradient with strongest impact to prefrontal cortex
(PFC) brain changes. Finally, we demonstrate the potential of the framework to explore the coupling of
structural changes across a priori defined subnetworks using an example of previously established resting state
functional connectivity.

1. Introduction

The human brain undergoes profound structural changes during
development and aging. Magnetic resonance imaging (MRI) has
become an invaluable tool to measure these brain changes in vivo.
There is an increasing number of advanced longitudinal neuroimaging
projects that focus on the specific patterns of change during brain
maturation and development (for review see Mills and Tamnes, 2014).
Several aspects of brain anatomy have been reported to undergo

curvilinear changes with different markers progressing differently
during development (Giedd et al., 1999; Lenroot et al., 2007;
Raznahan et al., 2011; Mills et al., 2016). Recent studies indicate that
cortical gray matter volume exhibits its highest volume during mid-to-
late childhood, and decreases across the second decade (Tamnes et al.,
2013; Aubert-Broche et al., 2013; Wierenga et al., 2014; Mills et al.,
2016). There is also longitudinal evidence for gender differences in the
shapes of developmental trajectories, with peak sizes 1 to 2 years
earlier in females (Lenroot et al., 2007), although these differences are
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reduced when overall cranial volume is taken into account in the
statistical model (Mills et al., 2016). Converging findings from cross-
sectional and longitudinal studies in late childhood and adolescence
also suggest that puberty-related physiological and hormonal changes
induce brain changes in specific networks (Blakemore et al., 2010).

The primary goal of the current study was to develop a novel
modelling framework rather than clarifying phenotype-specific ques-
tions about brain trajectories of regional gray matter volumes. One
limitation of most previous studies on structural development is that
mass-univariate techniques like general linear models (GLM) or linear-
mixed models (LME) (Bernal-Rusiel et al., 2012; Ziegler et al., 2015)
are applied. That often involves whole brain explorative analysis in
order to identify local structural correlates of age or time, which survive
a correction for multiple comparisons. The analysis of region-specific
effects is often followed by a post hoc discussion and integration of
observed results across multiple brain regions, which involves potential
anatomical, physiological and neurological causal factors. In this
context, terms such as ‘states’, ‘processes’ and ‘trajectories’ are used
rather informally in the literature.

Here we introduce the characterisation of structural imaging data
using multivariate differential equation models. This general approach
will allow us to study the structural changes underlying brain devel-
opment, plasticity, ageing and degeneration from a dynamical systems
perspective. In our approach ‘states’ and ‘trajectories’ then take on a
precise meaning endowed by the formal specification of a dynamical
system with input factors. Our framework avoids serious limitations of
univariate models, e.g. multiple testing, by providing a multivariate
model for a whole set of brain regions under Bayesian inference. With
regard to structural dynamics, states, x, would correspond to a vector of
structural indices (e.g. gray matter volumes) in a set of brain regions at
a single time point. The system then responds to inputs, u, a vector of
values at a single time point comprising for example levels of
hormones, growth factors or proteins. The change in state is then
given by

dx
dt

f x u a= ( , , )
(1)

where f x u a( , , ) describes a dynamical process governed by parameters
a. These parameters define, for example, the time constants of
interactions among states. Most generally the states may only be
observable through a noisy observation function y g x w e= ( , ) + . This
overall description corresponds to the multiple-input-multiple-output
(MIMO) system described previously (Friston et al., 2003; Friston,
2002).

In the study of development, hormonal or growth factor variables u
would perturb states leading to periods of maximal growth. Such
models are readily able, for example, to describe the logistic, multiple-
logistic and other patterns of growth observed in biology (Thompson
and Growth, 1945; Murray, 2002). Additionally, interactions among
state variables might account for regional patterns of volumetric
change arising from synaptic growth and pruning. This would add
value to current univariate perspectives on structural changes
(reviewed in Mills and Tamnes 2014), by adding a multivariate and
dynamic perspective. It also relates to the recently proposed notion of
‘maturational coupling’, i.e. exploring similarities of changes across
brain regions (Raznahan et al., 2011), but in principle should addi-
tionally enable quantification of joint underlying processes. Our
proposal shares the ambitions of the Dynamical Bayesian Network
(DBN) approach for studying inter-regional dependencies in structural
brain imaging (Chen et al., 2012). The DBN approach operates in
discrete time and models discrete observations (e.g. stable/atrophy),
whereas the MIMO approach operates in continuous time and models
continuous observations (e.g. gray matter volumes).

The DBN and MIMO frameworks share the benefits of a nonlinear
dynamical systems perspective, thus going beyond linear-mixed effects
models. However, being based on differential equations, the MIMO

approach is closer to standard approaches in systems biology and
neuroscience (Dayan and Abbott, 2001; Deco et al., 2008; Ingalls,
2013). Indeed, the work in this paper uses the same model estimation
and inference algorithm (‘Variational Laplace’ (Friston et al., 2007))
that is incorporated in the Dynamic Causal Modelling (DCM) frame-
work for making inferences about changes in brain connectivity from
fMRI (Friston et al., 2003) or M/EEG data (Daunizeau et al., 2009).

In what follows, we describe sample specifics, details about long-
itudinal MR image processing, and the specification of system inputs.
Then we introduce the specifics of the proposed model, briefly
revisiting the procedures for inference. In the later sections of the
paper we aim to demonstrate the construct validity of a dynamical
systems approach in the context of brain maturation using a large
sample of healthy children and adolescents. We present model
estimates and examples for evidence-based model comparison using
the empirical data. We hypothesise that intrinsic regional dynamics in
development can be described using a multivariate linear dynamical
system. According to previous findings we also expect substantial
contributions of a puberty-related factor and a growth factor to the
regional gray matter dynamics. Finally, using our novel approach we
study an example of inter-regional connectivity and whether structural
changes during development do reflect functional networks previously
observed in resting state fMRI (Smith et al., 2009).

2. Methods

2.1. Sample

For the purpose of validation with real data, we used a subsample of
the NIH Pediatric MRI Data Repository created by the NIH MRI Study
of Normal Brain Development (Evans and Group, 2006). This project
focuses on brain development in healthy typically developing infants,
children and adolescents from a demographically balanced population
based sampling. The data was acquired in multiple pediatric centers
and included a variety of MR-based sequences and protocols (https://
nihpd.crbs.ucsd.edu). A major part of the project aims at exploring the
general course of normal brain development. Notably, the screening
procedures excluded subjects with a family history of inherited
neurological disorders or a lifetime history of Axis I psychiatric
disorders, abnormalities during perinatal development, birth
complications, physical growth problems, neurological or specific
psychiatric disorders. A detailed description of the full sample
acquisition and exclusion criteria can be found in Evans and Group (2006).

Image processing started with a sample from release 5 of the NIH
MRI study objective 1 of the children and adolescents. The sample
downloaded from the NIH repository included 770 scans of 401
subjects scanned at ages 4.8–21.9 years with zero, one or two annual
follow-up scans per subject. A detailed overview of the acquisition
protocols of the NIH MRI Study of Normal Brain Development can be
found here (http://pediatricmri.nih.gov/nihpd/info/protocols.html)
and in Evans and Group (2006). The available sample included data
from both primary protocols and fallback protocols with either 1 mm
or 3 mm slice thickness, respectively. We observed variations in raw
data slice resolution influencing the quality of the image preprocessing
results and discarded further 32 scans due to any serious artifacts in
image segmentation, registration, or nonlinear normalization. After
MR preprocessing we quality checked the image data (for details see
Section 2.3). Indications for lower data quality, higher frequency of
usage of the fallback (rather than the standard) protocols, and much
sparser density of sampling at the lower age range resulted in
discarding children younger than six years. We further focussed on a
longitudinal sample for validation of our dynamical systems model, i.e.
we included only subjects having follow-up measurements. The
analyzed sample consisted of 289 children and adolescents (151
females, 135 males) with ages 6–21.9 years (M=12.47, SD=3.88
years) with in total 637 scans (338 from females and 299 obtained
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