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Is the statistic value all we should care about in neuroimaging?
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A B S T R A C T

Here we address an important issue that has been embedded within the neuroimaging community for a long
time: the absence of effect estimates in results reporting in the literature. The statistic value itself, as a
dimensionless measure, does not provide information on the biophysical interpretation of a study, and it
certainly does not represent the whole picture of a study. Unfortunately, in contrast to standard practice in most
scientific fields, effect (or amplitude) estimates are usually not provided in most results reporting in the current
neuroimaging publications and presentations. Possible reasons underlying this general trend include (1) lack of
general awareness, (2) software limitations, (3) inaccurate estimation of the BOLD response, and (4) poor
modeling due to our relatively limited understanding of FMRI signal components. However, as we discuss here,
such reporting damages the reliability and interpretability of the scientific findings themselves, and there is in
fact no overwhelming reason for such a practice to persist. In order to promote meaningful interpretation, cross
validation, reproducibility, meta and power analyses in neuroimaging, we strongly suggest that, as part of good
scientific practice, effect estimates should be reported together with their corresponding statistic values. We
provide several easily adaptable recommendations for facilitating this process.

1. Introduction

Just as cartography requires a balance to be struck between the loss
of important detail and the exactitude of a map that has “the scale of a
mile to the mile” (Carroll, 1889), so too science requires careful
extraction and summarization following an experiment. In other
words, to present concisely the important components of the data
and analyses, an investigator reports the experiment and makes a
generalized conclusion based on some supporting evidence: a small
condensed set of numbers. The crucial question is: How much or to
which extent should the investigator compress the information without
sacrificing too much? There are arbitrary choices that have to be made,
but there are some definite thresholds under which loss of information
is too great for optimal utility.

For example, in a typical statistical analysis, two quantitative results
are produced for each effect of interest: the estimation for the
amplitude of the effect itself (e.g., a β value from regression analysis
or GLM) and the associated statistic (e.g., t or z). The former provides
the magnitude of a physical measurement, which is the essence of
scientific investigation, while the latter offers statistical substantiation
for the effect estimate in the form of a significance level (or confidence
interval, the implied range that may contain the effect estimate with a
certain likelihood). While the relationship between the two quantitates
is tight, each conveys distinct information about the result of the

experiment; in most scientific disciplines, it is considered unacceptable
if only significance is reported (Sullivan and Feinn, 2012): the statistic
value serves as auxiliary evidence for the existence of the targeted
effect, and it is the effect estimate itself that is the center of investiga-
tion as the physical property of interest. For example, suppose that
physicists would like to validate the predictions of the general relativity
(Einstein, 1915) by investigating the gravitational waves from the
merger of two black holes. It would be hard to imagine that they would
only report a statistical value or the significance of their measurement
(e.g., a chance of 1 event per 203,000 years, or a significance level of
3.4 × 10−7), but that they would not reveal the strength of the signal
they have detected (a peak gravitational-wave strain of 1.0 × 10−21 in
the frequency range of 35 to 250 Hz) (Abbott et al., 2016).

However, within the field of neuroimaging, it has remained the
predominantly common practice to report only statistical mapping
tests in publications and presentations, a custom which has been
largely (and perplexingly) immune to critical scrutiny. For instance,
one typically sees brain results provided as blobs whose color spectrum
corresponds to t- or z-values (or occasionally to p-values), and most of
the time the underlying degrees of freedom are left out, rendering the
statistics even harder to interpret. Similarly, in tabulated results for
brain regions, standard reports usually contain the coordinates and
statistic value at a single peak voxel (which is itself defined, again, as
the maximum of the statistical values, not of the effect estimates, within
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the region), and the effect estimate at such a peak voxel is rarely
reported. The same phenomenon commonly occurs in reporting results
of seed-based correlation analyses for resting-state data, where the
brain maps and tables usually show the statistic (often z) values instead
of and without including inter-regional correlations.

Recently there have been a number of discussions about the use and
misuse of p-values in the scientific community (e.g., Wasserstein and
Lazar, 2016; Nuzzo, 2014), and others have been more critical of the
“cult” or “obsession” of statistical significance (e.g., Ziliak and
McCloskey, 2009). The editors of the journal, Basic and Applied
Social Psychology, have gone so far as to take the seemingly extreme
step as to no longer accept papers with p-values due to the concern of
the statistics being used to support lower-quality research (Trafimow,
2014). In a sense, our concern here is related, and addressing it would
also alleviate many of these other topical issues, but the concern is
specifically focused on the need for including the effect estimate in
neuroimaging studies. To frame the discussion here, we quote the six
guiding principles on p-values in a recent statement released by The
American Statistical Association (ASA) (Wasserstein and Lazar, 2016):

1. “ p-values can indicate how incompatible the data are with a
specified statistical model.

2. p-values do not measure the probability that the studied hypothesis
is true, or the probability that the data were produced by random
chance alone.

3. Scientific conclusions and business or policy decisions should not be
based only on whether a p-value passes a specific threshold.

4. Proper inference requires full reporting and transparency.
5. A p-value, or statistical significance, does not measure the size of an

effect or the importance of a result.
6. By itself, a p-value does not provide a good measure of evidence

regarding a model or hypothesis.”

We believe that the neuroimaging field needs to move forward to
promote the reportage of the effect estimates along with the corre-
sponding statistics. We first discuss the statistical terms in the context
of FMRI analyses, highlighting specific features related to that field. We
then argue that full reporting in FMRI is necessary and promotes good
scientific practice, clarity, increased reproducibility, cross-study com-
parability and allows for proper meta and power analyses. Finally, we
provide several recommendations for researchers and software de-
signers to facilitate these “best practices” actions.

2. What is the effect estimate in neuroimaging?

In neuroimaging, the ultimate focus is on the physical evidence for
the brain's neuronal response, which evidence is typically embodied in
the strength of the FMRI BOLD signal. For task-related experiments,
the response strength is reflected in the effect estimate (or β value)
associated with a task/condition or with a linear combination of β's
from multiple tasks, such as the contrast between two tasks. For seed-
based correlation analyses with resting-state data, time series correla-
tion captures the relationship between a seed and the rest of the brain.
Similarly, for naturalistic scanning, one measure is the “inter-subject
correlation” (ISC) at a region that features the synchronization or
similarity among subjects (Hasson et al., 2004). It is worth noting that,
in typical multivariate pattern analysis (Haxby et al., 2001), the
sensitivity measure showing the percentage of cases in which a
classifier makes correct predictions is not an effect estimate, but it is
a metric that combines the size of the effect (i.e., how discriminable the
experimental conditions are) with the statistical reliability with which
the effect is estimated (i.e. the noise level on the activity patterns).
Similarly, some model-based methods have been adopted to account
for rich sets of FMRI measurements in fields such as vision studies.
Even though an effect estimate in the conventional sense cannot be
defined under such scenarios, the proportion of variance in the data

that could be accounted for by a model (Kay et al., 2013) or by a
representational similarity matrix (Khaligh-Razavi and Kriegeskorte,
2014) can effectively serve as a physical metric that characterizes the
model performance.

Here, we use the term “effect estimate” to refer generally to any of
these or analogous cases: the estimated response magnitude (e.g., β
value) of a regression model or GLM, the estimated correlation
coefficient in the context of correlation analyses, etc. We note that in
the statistical literature, the phrase “effect size” can typically encom-
pass two distinct scenarios: one for describing absolute (or unstandar-
dized) effect size (the estimated magnitude of an effect under investiga-
tion, e.g., sample mean or the estimated β in a regression model), and
the other for describing standardized effect magnitude (e.g., Cohen's d),
which is typically used when the measurement units have no intrinsic
meaning (e.g., Likert-type scale adopted in survey research), when a
comparison is performed between two different scales (e.g., relative
effect sizes among different confounders such as age and sex), or when
data variability is the focus of study (Sullivan and Feinn, 2012). While
it is well known that the acquired BOLD signal has only arbitrary units,
it might seem that the second usage of effect size is a good candidate.
However, FMRI data are commonly scaled to a more meaningful
evaluation in terms of percent signal change (as discussed further
below). As such, here we use the term “effect estimate” in FMRI to refer
to the unit-bearing case of “effect size” in the context of percent signal
change.

3. What does a t-statistic value reveal in neuroimaging?

A t-statistic value for an effect estimate is calculated as the latter
divided by its standard error, which represents the reliability or
accuracy of the effect estimate. Thus, the t-statistic is a mixture of
two components, the effect estimate and the noise estimate. However,
both components vary across the brain. For example, the variability of
BOLD response may partially result from the inhomogeneity of
vascularization, and to some extent the variability of the noise level
may be caused by the heterogeneous sensitivity profiles of RF coils
across the brain. The combined impact from the two components
makes the t-statistic unsuitable for comparing effects across regions,
subjects, groups, or studies, which is one of the reasons that FMRI
group analysis is typically performed on the effect estimate, not the t-
statistic. In addition, as a dimensionless measure, the t-statistic is more
susceptible to sample size (number of trials or subjects), signal-to-noise
ratio (SNR), preprocessing steps/methods, experimental designs, un-
explained confounds, and scanner parameters than the effect estimate
itself. Therefore, statistic values only serve the purpose of a binary
inference of null (e.g., there is no difference between the two condi-
tions) versus alternative (e.g., there is difference between the two
conditions) hypotheses, and it does not provide any information about
the specific response magnitude. For example, two voxels (or regions)
with the same t-statistic value in the brain do not mean the same
response amplitude, and vice versa (Fig. 1). That is to say, the t-
statistic does not carry enough interpretation information for the effect
of interest.

4. Practical realities/difficulties of FMRI

There are several features inherent to FMRI acquisition and
analysis that present challenges to an investigator interpreting and
reporting results. At first glance, some of these may seem to explain the
present practices of reporting only statistic values as results. We
describe them briefly here, and then discuss how they actually
necessitate, rather than discourage, the inclusion of effect estimates
in the end.
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