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A B S T R A C T

Decoding, i.e. prediction from brain images or signals, calls for empirical evaluation of its predictive power.
Such evaluation is achieved via cross-validation, a method also used to tune decoders' hyper-parameters. This
paper is a review on cross-validation procedures for decoding in neuroimaging. It includes a didactic overview of
the relevant theoretical considerations. Practical aspects are highlighted with an extensive empirical study of the
common decoders in within- and across-subject predictions, on multiple datasets –anatomical and functional
MRI and MEG– and simulations. Theory and experiments outline that the popular “leave-one-out” strategy
leads to unstable and biased estimates, and a repeated random splits method should be preferred. Experiments
outline the large error bars of cross-validation in neuroimaging settings: typical confidence intervals of 10%.
Nested cross-validation can tune decoders' parameters while avoiding circularity bias. However we find that it
can be favorable to use sane defaults, in particular for non-sparse decoders.

1. Introduction: decoding needs model evaluation

Decoding, i.e. predicting behavior or phenotypes from brain images
or signals, has become a central tool in neuroimage data processing
(Haynes and Rees, 2006; Haynes, 2015; Kamitani and Tong, 2005;
Norman et al., 2006; Varoquaux and Thirion, 2014; Yarkoni and
Westfall, 2016). In clinical applications, prediction opens the door to
diagnosis or prognosis (Mouro-Miranda et al., 2005; Fu et al., 2008;
Demirci et al., 2008). To study cognition, successful prediction is seen
as evidence of a link between observed behavior and a brain region
(Haxby et al., 2001) or a small fraction of the image (Kriegeskorte et al.,
2006). Decoding power can test if an encoding model describes well
multiple facets of stimuli (Mitchell et al., 2008; Naselaris et al., 2011).
Prediction can be used to establish what specific brain functions are
implied by observed activations (Schwartz et al., 2013; Poldrack et al.,
2009). All these applications rely on measuring the predictive power of
a decoder.

Assessing predictive power is difficult as it calls for characterizing
the decoder on prospective data, rather than on the data at hand.
Another challenge is that the decoder must often choose between many

different estimates that give rise to the same prediction error on the
data, when there are more features (voxels) than samples (brain
images, trials, or subjects). For this choice, it relies on some form of
regularization, that embodies a prior on the solution (Hastie et al.,
2009). The amount of regularization is a parameter of the decoder that
may require tuning. Choosing a decoder, or setting appropriately its
internal parameters, are important questions for brain mapping, as
these choice will not only condition the prediction performance of the
decoder, but also the brain features that it highlights.

Measuring prediction accuracy is central to decoding, to assess a
decoder, select one in various alternatives, or tune its parameters. The
topic of this paper is cross-validation, the standard tool to measure
predictive power and tune parameters in decoding. The first section is a
primer on cross-validation giving the theoretical underpinnings and
the current practice in neuroimaging. In the second section, we
perform an extensive empirical study. This study shows that cross-
validation results carry a large uncertainty, that cross-validation should
be performed on full blocks of correlated data, and that repeated
random splits should be preferred to leave-one-out. Results also yield
guidelines for decoder parameter choice in terms of prediction
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performance and stability.

2. A primer on cross-validation

This section is a tutorial introduction to important concepts in cross
validation for decoding from brain images.

2.1. Cross-validation: estimating predictive power

In neuroimaging, a decoder is a predictive model that, given brain
images X, infers an external variable y. Typically, y is a categorical
variable giving the experimental condition or the health status of
subjects. The accuracy, or predictive power, of this model is the
expected error on the prediction, formally:

 y yaccuracy = [ ( , )]pred ground truth (1)

where is a measure of the error, most often1 the fraction of instances
for which y y≠pred ground truth. Importantly, in Eq. (1),  denotes the
expectation, ie the average error that the model would make on infinite
amount of data generated from the same experimental process.

In decoding settings, the investigator has access to labeled data, ie
brain images for which the variable to predict, y, is known. These data
are used to train the model, fitting the model parameters, and to
estimate its predictive power. However, the same observations cannot
be used for both. Indeed, it is much easier to find the correct labels for
brain images that have been seen by the decoder than for unknown
images.2 The challenge is to measure the ability to generalize to new
data.

The standard approach to measure predictive power is cross-
validation: the available data is split into a train set, used to train
the model, and a test set, unseen by the model during training and used
to compute a prediction error (Fig. 1). Chapter 7 of Hastie et al. (2009)
contains a reference on statistical aspects of cross-validation. Below, we
detail important considerations in neuroimaging.

Independence of train and test sets. Cross-validation relies on
independence between the train and test sets. With time-series, as in
fMRI, the autocorrelation of brain signals and the temporal structure of
the confounds imply that a time separation is needed to give truly
independent observations. In addition, to give a meaningful estimate of
prediction power, the test set should contain new samples displaying all
confounding uncontrolled sources of variability. For instance, in multi-
session data, it is harder to predict on a new session than to leave out
part of each session and use these samples as a test set. However,
generalization to new sessions is useful to capture actual invariant
information. Similarly, for multi-subject data, predictions on new
subjects give results that hold at the population level. However, a
confound such as movement may correlate with the diagnostic status
predicted. In such a case the amount of movement should be balanced
between train and test set.

Sufficient test data. Large test sets are necessary to obtain sufficient
power for the prediction error for each split of cross-validation. As the
amount of data is limited, there is a balance to strike between achieving
such large test sets and keeping enough training data to reach a good fit
with the decoder. Indeed, theoretical results show that cross-validation
has a negative bias on small dataset (Arlot and Celisse, 2010, Section
5.1) as it involves fitting models on a fraction of the data. On the other
hand, large test sets decrease the variance of the estimated accuracy
(Arlot and Celisse, 2010, Section 5.2). A good cross-validation strategy
balances these two opposite effects. Neuroimaging papers often use

leave one out cross-validation, leaving out a single sample at each split.
While this provides ample data for training, it maximizes test-set
variance and does not yield stable estimates of predictive accuracy.3

From a decision-theory standpoint, it is preferable to leave out 10% to
20% of the data, as in 10-fold cross-validation (Hastie et al., 2009,
chap. 7.12; Breiman and Spector, 1992; Kohavi, 1995). Finally, it is
also beneficial to increase the number of splits while keeping a given
ratio between train and test set size. For this purpose k-fold can be
replaced by strategies relying on repeated random splits of the data
(sometimes called repeated learning-testing4 (Arlot and Celisse, 2010)
or ShuffleSplit (Pedregosa et al., 2011)). As discussed above, such splits
should be consistent with the dependence structure across the ob-
servations (using eg a LabelShuffleSplit), or the training set could be
stratified to avoid class imbalance (Raamana et al., 2015). In neuroi-
maging, good strategies often involve leaving out sessions or subjects.

2.2. Hyper-parameter selection

A necessary evil: one size does not fit all. In standard statistics,
fitting a simple model on abundant data can be done without the tricky
choice of a meta-parameter: all model parameters are estimated from
the data, for instance with a maximum-likelihood criterion. However,
in high-dimensional settings, when the number of model parameters is
much larger than the sample size, some form of regularization is
needed. Indeed, adjusting model parameters to best fit the data without
restriction leads to overfit, ie fitting noise (Hastie et al., 2009, chap. 7).
Some form of regularization or prior is then necessary to restrict model
complexity, e.g. with low-dimensional PCA in discriminant analysis
(Chen et al., 2006), or by selecting a small number of voxels with a
sparse penalty (Yamashita, 2008; Carroll et al., 2009). If too much
regularization is imposed, the ensuing models are too constrained by
the prior, they underfit, ie they do not exploit the full richness of the
data. Both underfitting and overfitting are detrimental to predictive
power and to the estimation of model weights, the decoder maps.
Choosing the amount of regularization is a typical bias-variance
problem: erring on the side of variance leads to overfit, while too
much bias leads to underfit. In general, the best tradeoff is a data-
specific choice, governed by the statistical power of the prediction task:
the amount of data and the signal-to-noise ratio.

Nested cross-validation. Choosing the right amount of regulariza-
tion can improve the predictive power of a decoder and controls the
appearance of the weight maps. The most common approach to set it is
to use cross-validation to measure predictive power for various choices
of regularization and to retain the value that maximizes predictive
power. Importantly, with such a procedure, the amount of regulariza-
tion becomes a parameter adjusted on data, and thus the predictive
performance measured in the corresponding cross-validation loop is
not a reliable assessment of the predictive performance of the model.
The standard procedure is then to refit the model on the available data,
and test its predictive performance on new data, called a validation set.
Given a finite amount of data, a nested cross-validation procedure can

Test setTrain set

Full data

Fig. 1. Cross-validation: the data is split multiple times into a train set, used to train the
model, and a test set, used to compute predictive power.

1 For multi-class problems, where there is more than 2 categories in y , or for
unbalanced classes, a more elaborate choice is advisable, to distinguish misses and false
detections for each class.

2 A simple strategy that makes no errors on seen images is simply to store all these
images during the training and, when asked to predict on an image, to look up the
corresponding label in the store.

3 One simple aspect of the shortcomings of small test sets is that they produce
unbalanced dataset, in particular leave-one-out for which there is only one class
represented in the test set.

4 Also related is bootstrap CV, which may however duplicate samples inside the
training set of the test set.
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