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Available online 17 November 2015 Multivariate pattern analysis (MVPA) has become an important tool for identifying brain representations of psy-
chological processes and clinical outcomes using fMRI and relatedmethods. Suchmethods can be used to predict
or ‘decode’ psychological states in individual subjects. Single-subject MVPA approaches, however, are limited by
the amount and quality of individual-subject data. In spite of higher spatial resolution, predictive accuracy from
single-subject data often does not exceed what can be accomplished using coarser, group-level maps, because
single-subject patterns are trained on limited amounts of often-noisy data. Here, we present amethod that com-
bines population-level priors, in the form of biomarker patterns developed on prior samples, with single-subject
MVPAmaps to improve single-subject prediction. Theoretical results and simulationsmotivate aweighting based
on the relative variances of biomarker-based prediction—based on population-level predictive maps from prior
groups—and individual-subject, cross-validated prediction. Empirical results predicting pain using brain activity
on a trial-by-trial basis (single-trial prediction) across 6 studies (N = 180 participants) confirm the theoretical
predictions. Regularization based on a population-level biomarker—in this case, the Neurologic Pain Signature
(NPS)—improved single-subject prediction accuracy compared with idiographic maps based on the individuals'
data alone. The regularization scheme that we propose, which we term group-regularized individual prediction
(GRIP), can be applied broadly to within-personMVPA-based prediction.We also show howGRIP can be used to
evaluate data quality and provide benchmarks for the appropriateness of population-levelmaps like theNPS for a
given individual or study.
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Introduction

Tremendous progress has beenmade in fMRI research over the past
10 years. Much of the benefit has resulted from multivariate pattern
analysis (MVPA) based studies of mental representations, which have

enhanced the ability to identify brain patterns that are predictive of
behavioral and psychological outcomes (Chang et al., in press; Davis
and Poldrack, 2013; Haxby et al., 2001, 2014; Kay et al., 2008;
Poldrack et al., 2009; Wager et al., 2013; Woo et al., 2015). In standard
brain mapping analyses, many regions of the brain might respond to a
given task. However, for a pattern of brain activity to be considered
useful as a representation of a psychological or behavioral state, it must
be predictive of (i.e., be sensitive and specific to) that state.

Recent studies have identified provisional representations for many
kinds of psychological states, including perception of low level visual
features (Kamitani and Tong, 2005) and higher-order object properties
(Haxby et al., 2001), knowledge of semantic categories (Huth et al.,
2012; Mitchell et al., 2008), memory (Kuhl et al., 2011; Rissman et al.,
2010; Xue et al., 2010), affective states such as pain (Brodersen et al.,
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2012; Cecchi et al., 2012;Marquand et al., 2010;Wager et al., 2013), and
emotion (Baucom et al., 2012; Chang et al., in press; Kassam et al.,
2013), and identification of individuals with clinical disorders
(Arbabshirani et al., 2013; Craddock et al., 2009; Doehrmann et al.,
2013; Fu et al., 2008; Siegle et al., 2006;Whelan et al., 2014). Once rep-
resentations of specific percepts (e.g., objects) or experiences
(e.g., emotion) are identified, studies can examine how these represen-
tations are shaped by contextual, psychological, and neurobiological
processes—e.g., how object representations are maintained in working
memory during a delay (Harrison and Tong, 2009), how items are recol-
lected during memory recall and compete with other memories (Kuhl
et al., 2011), or how pain representations are modified by cognitive re-
appraisal (Woo et al., 2015). Identifying patterns of fMRI activity that
can serve as proxies for representations requires multivariate analyses
that are predictive of outcomes in individual subjects. In this paper,
we develop a method for improving such single subject, MVPA-based
predictions.

Most single subject predictive analyses utilize only data from one
participant in developing the predictive model (e.g., Horikawa et al.,
2013). The theory behind this approach is that brain representations
are idiographic (i.e., different individual subjects have different multi-
variate brain patterns that predict outcomes). For example, the pattern
of fMRI activitywithin V1 that predicts line orientation,may be different
for different individuals (Freeman et al., 2011; Kamitani and Tong,
2005), and only patterns at broader spatial scales may be conserved
across individuals (Heeger and Ress, 2002; Norman et al., 2006). If
brain topography is truly idiographic and varies dramatically across
individuals, individualized training to derive the best predictive multi-
variate brain pattern is likely the optimal strategy. However, often,
there is information at multiple spatial scales, including much informa-
tion conserved across individuals (Chang et al., in press; Kassam et al.,
2013; Poldrack et al., 2009; Rissman et al., 2010; Shinkareva et al.,
2008; Wager et al., 2013; Woo et al., 2014). In addition, the quantity
and quality of fMRI data are limited in single subject datasets, and
often high-quality single subject prediction requires hours of scanning
for each individual over multiple days (Gonzalez-Castillo et al., 2012;
Nishimoto et al., 2011). Often, perhaps surprisingly, models that are
trained to predict out-of-sample individuals perform as well or better
than models trained on individual subject data (Chang et al., in press;
Poldrack et al., 2009; Shinkareva et al., 2008; Wager et al., 2013) when
the spatial topography of predictive information is shared across
individuals. In such cases, using normative group maps based on other
individuals may help to regularize single subject predictive patterns
using information conserved across subjects, constraining the single
subject solution in ways that improve prediction accuracy and prevent
overfitting.

This paper develops a principled scheme for combining normative
groupmaps based on previously defined predictive patterns (i.e., signa-
tures) and single subject idiographic maps. In addition to improving
prediction accuracy, this procedure regularizes individual subject
maps towards prior expectations, therefore improving the quality of
single subject predictive maps, and allowing for a principled updating
of normative population-based maps as more data are accumulated.
This weighting can be expressed in both frequentist and Bayesian
frameworks, which are shown to be mathematically equivalent.
Marquand et al (2014) addressed a similar problem, by recasting the
decoding problem in a multi-task learning framework, allowing them
to extract information from the data by sharing information between
subjects. This was found to be extremely beneficial when only a small
number of trials were available for each subject.

The method we develop here, which we term group-regularized
individual prediction (GRIP), combines group and idiographic maps in
proportion to their respective variances, in accordance with theory on
empirical Bayes estimation. It can be applied prospectively to individual
subjects' data to improve prediction accuracy and stabilize individual-
subject predictive maps. Thus, one main use is in improving single

subject MVPA-based prediction accuracy. In addition, it can be used to
provide quality control estimates and benchmarks for a given individual
or study paradigm. The quality of idiographic predictions can be used
to benchmark data quality for individual persons, and the accuracy of
prediction using a population-level map can provide benchmarks
on the appropriateness of the map for a given population, sample, or
study paradigm. Such cross-study metrics are valuable as fMRI data
are increasingly used in multi-site and translational settings.

The GRIPmethod can be applied to any domain and is agnostic with
respect to the training algorithm used. However, in this paper, we eval-
uate its utility in predicting pain intensity ratings. Pain is an interesting
application domain for three reasons. First, it is associated with
enormous cognitive, social, and economic costs (IOM, 2011), but its
neurological bases are not yet well understood (Tracey, 2011). Develop-
ing brain models capable of predicting pain intensity and dissociating
different types of neurological contributions to pain is a high-priority.
Second, pain is currently assessed primarily by means of self-report, a
behavioral measure of subjective experience that is compromised in
many vulnerable populations (e.g., the very old or very young, persons
with cognitive impairment, and those who are minimally conscious)
and influenced by a number of complex sociocultural factors. Brain-
based predictive models could complement self-report by providing
measures of neurophysiological systems that contribute to pain, and
ultimately identify sub-types of pain and sub-types of patients based di-
rectly on brain information. And third, population-levelmaps predictive
of pain intensity are available (Wager et al., 2013), providing priors to
use in regularizing individual-subject predictions. Several groups have
published innovative work on single subject prediction (Brodersen
et al., 2012; Cecchi et al., 2012; Marquand et al., 2010). Complementing
these approaches, we have developed a normative population-based
pattern that classifies stimuli differing moderately in pain intensity
with over 90% accuracy, across multiple sites and scanners and in
new, out-of-sample individuals (Wager et al., 2013). Here, we combine
information from this population-normed signature pattern—called the
Neurologic Pain Signature (NPS)—with idiographic MVPA maps to
improve the accuracy of predicting pain intensity from brain activity.

We begin by developing the statistical theory underlying empirical
Bayes regularization and the GRIP model. We then present brief theo-
retical simulations that characterize the conditions under which
weighting towards individuals versus group maps is optimal. Then we
apply the method to combine data from six studies of experimental
thermal pain (N = 180), comparing the accuracy of (a) cross-
validated idiographic predictive maps, (b) a population-level map, the
NPS, and (c) the GRIP combination of the NPS prior and idiographic
maps (see Fig. 1 for an overview). Predictions aremade about single tri-
als, i.e., individual periods of thermal stimulation lasting 1.85 to 15 s,
using time series-appropriate cross-validation methods. The results
show that the GRIP estimator outperforms both the population-level
NPS map and the idiographic, single-subject prediction map.

Method

Theory

Supposewehave a set of observations fromm trials of a certain stim-
ulus applied to a single subject, which we denote (xj, yj) for j=1,…m.
Here, xj is a vector of features of length V, and yj is a scalar outcome
variable. In our example, we assume that each trial consists of a thermal
stimulus. Thus, xj is a summary of the brain response, and yj is the
reported pain corresponding to that trial.

Now, suppose we seek to use these observations to create a predic-
tive model from which we can estimate pain report from brain activa-
tion for the subject in question. Using standard machine learning
techniques (the approach is agnostic to the specific type of technique,
though we assume that it is linear in the continuation) we can find a
set of idiographic brain weights ŵI that can be used to predict the
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