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Given the fact that clinical bedside examinations can have a high rate of misdiagnosis, machine learning tech-
niques based on neuroimaging and electrophysiological measurements are increasingly being considered for co-
matose patients and patientswith unresponsivewakefulness syndrome, aminimally conscious state or locked-in
syndrome.Machine learning techniques have the potential tomove fromgroup-level statistical results to person-
alized predictions in a clinical setting. They have been applied for the purpose of (1) detecting changes in brain
activation during functional tasks, equivalent to a behavioral command-following test and (2) estimating signs
of consciousness by analyzing measurement data obtained frommultiple subjects in resting state. In this review,
weprovide a comprehensive overview of the literature on both approaches and discuss the translation of present
findings to clinical practice. We found that most studies struggle with the difficulty of establishing a reliable
behavioral assessment and fluctuations in the patient's levels of arousal. Both these factors affect the training
and validation ofmachine learningmethods to a considerable degree. In studies involvingmore than 50 patients,
small to moderate evidence was found for the presence of signs of consciousness or good outcome, where one
study even showed strong evidence for good outcome.

© 2015 Elsevier Inc. All rights reserved.
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Introduction

“Look up. Look down. Squeezemyhand”. These simple commands be-
haviorally assess the state of consciousness of a patient following a coma.
To date, the diagnostic assessment of patients with disorders of con-
sciousness (DOC) is mainly based on the observation of motor and oro-
motor behavior at the bedside (Giacino et al., 2014). The evaluation of
non-reflex behavior, however, is not straightforward because the pa-
tient’s level of vigilance may fluctuate over time. Also, he or she may
suffer from cognitive deficits (e.g., aphasia or apraxia) and/or sensory
impairments (e.g., blindness, deafness, paralysis). Reduced, or easily
exhausted, motor activity and pain are other factors that may complicate
the evaluation. In all these cases, a lack of responsiveness does not neces-
sarily correspond to absence of awareness (Sanders et al., 2012). The
identification of unambiguous signs of consciousness in patients with
DOC is clinically challenging and of critical importance for establishing a
diagnosis, guiding therapeutic decisions and predicting outcome.

Therefore, recognizing the subtle difference betweenunresponsivewake-
fulness syndrome (UWS) patients (where patients “awaken” from a
coma, meaning they open their eyes, but only show reflex behavior, for-
merly known as vegetative state or apallic syndrome; Laureys et al.,
2010) and minimally conscious state (MCS) patients (who show non-
reflex movement, e.g., visual fixation or pursuit, localization to pain or
following simple commands like “look up” and “squeeze my hand”;
Bruno et al., 2011; Giacino et al., 2002) requires repeated evaluations
by skilled examiners. Furthermore, it is relatively easy to confuse UWS
and locked-in syndrome patients (LIS; Plum and Posner, 1971) who
are fully conscious but completely paralyzed except for small move-
ments of the eyes or eyelids. Not surprisingly, up to 40% of patients
with UWS are misdiagnosed (Schnakers et al., 2009a). Key elements in
the diagnosis are the acquisition of voluntary responses, such as com-
mand following, and functional communication which indicates an
emergence from UWS (Schnakers et al., 2009a) and MCS, respectively.

Neuroimaging and electrophysiological approaches have been pro-
posed to complement the bedside examination. They offer motor-
independent information to improve clinical differentiation and prog-
nostic predictions. Nevertheless, while significant differences have
been reported at the group level, most of these results do not allow
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distinguishing patients at the single-subject level. Some studies, how-
ever, extend standard statistical analysis at the single-subject level
with expert visual inspection (Stender et al., 2014) or prior hypotheses
(for example, Owen et al., 2006; Schnakers et al., 2008; Monti et al.,
2010). For example, Owen and colleagues (Owen et al., 2006) instructed
a patient to alternate 30-second periods of mental imagery of playing
tennis with 30-second periods of rest following a block-design protocol.
A single trial consisted of 5 rest vs. imagery cycles. Then, a general linear
model contrasting periods of active imagery with periods of rest was
computed. Contrastswere constrained by prior hypotheses on activated
brain locations; in this case, the supplementary motor area. Significant
activation in the predefined brain locations is then used as indication
that the patient is correctly performing the task. Calculating and
thresholding a single variable or group of variables has also been pro-
posed. For example, spectral entropy summarizes EEG signals as a single
value which can distinguish patients in acute state with good accuracy
(Gosseries et al., 2011).

Machine learning techniques have the potential tomakemore effec-
tive use of neuroimaging and electrophysiological data and allow diag-
nosis and prognosis at the single-subject level. Instead of considering
features/activations univariately, they combine information in a multi-
variate way which allows them to highlight differences that might
otherwise remain undetected. They are also not biased by prior hypoth-
eses on location or time because they do not focus on the detection of a
specific activation pattern but rather on a data-driven estimation of the
most discriminative patternwithin a trial or class. This can be an advan-
tage given that prior hypotheses may no longer hold in pathological
situations. It has been shown that data obtained from patients often
exhibits higher inter-trial as well as inter-individual variability than
data obtained from controls (Goldfine et al., 2011; King et al., 2013a;
Lulé et al., 2013). Machine learning techniques provide a way to quanti-
fy differences in neural responses at the level of the single patient. Also,
their statistical validation is limited to a single testwhich is independent
of the number of features. This has the added advantage of also limiting
the multiple comparison problem.

Until now,machine learning techniques have been applied to individ-
ual diagnosis using two main approaches: (1) detection of command-
following and (2) prediction of diagnosis and outcome using structural
or functional data. The first approach uses data from only a single subject
measured over time and has its origin in brain-computer interface (BCI)
research. The goal is to assess whether a subject is capable of following
commands by measuring his/her brain activity during a functional
task. For example, in the tennis paradigm mentioned above, the level
of activation in each gray matter voxel could be averaged over a short
time period. The average activations of all gray matter voxels could
then be used as input features to train a classifier that detects the tran-
sition between rest and active imagery states. If the classification accu-
racy exceeds a given threshold, the subject can be considered to be able
to correctly modulate his/her brain activity according to the given com-
mands. This would be equivalent to behavioral command-following,
which is a sign of MCS.

The second approach uses data obtained frommultiple subjects and
tries to derive a prediction model that can be used on individual sub-
jects. For example, resting-state fMRI data might be acquired from a
group of patients and healthy controls afterwhich connectivitymatrices
of certain resting-state networks are calculated for all subjects. Since
each group of subjects is likely to have a specific pattern of fMRI connec-
tivity a classifier can be trained which uses the connectivity features to
distinguish between the groups, for example, controls versus unrespon-
sive patients. If classification accuracy is high enough the resulting
model can then be used to classify (diagnose) new patients. Instead of
resting-state networks, features can also be derived fromEEG, structural
MRI, diffusion tensor imaging (DTI) or positron emission tomography
(PET).

In this paper, we present a survey of the literature on the use of elec-
trophysiology and neuroimaging for diagnosing patients with disorders

of consciousness (DOC).We comparemachine learning techniqueswith
studies based on univariate analysis and simple thresholding. We first
provide a brief introduction of the diagnosis of DOC and list key points
to take into account when machine learning techniques are used to
improve the diagnosis in a clinically useful way. We will then give an
overview of previous work done in the two areas mentioned earlier:
(1) detection of command-following and (2) prediction of diagnosis
and outcome based on multi-subject data. We will highlight the main
limitations common to many studies and offer a number of suggestions
for further investigation. Finally, we discuss several challenges which
the field needs to overcome in order to translatemachine learning tech-
niques into clinical practice.

Machine learning for diagnosis of disorders of consciousness

Current practice in diagnosing DOC

Disorders of consciousness are currently mostly based on consensus
diagnosis or using the Coma Recovery Scale-Revised (CRS-R; Giacino
et al., 2004). Consensus diagnosis is based on behavioral observations
of caregivers and is the most common type of diagnostic procedure in
non-specialized centers. These centers would likely benefit the most
from an automated diagnostic procedure given the fact that they do
not usually employ DOC specialists. The rate ofmisdiagnosis of UWSpa-
tients by clinical consensusmethods is up to 40% (Andrews et al., 1996;
Childs and Mercer, 1996; Schnakers et al., 2009a). However, this error
rate can be reduced by using standardized scoring systems such as the
CRS-R, which is currently the most validated and sensitive method for
behavioral discrimination of patients with DOC. Diagnosis remains chal-
lenging, however, because patients typically show considerable fluctua-
tions in the level of consciousness or arousal over time. The examiner
may obtain clear evidence of volitional behavior during one examina-
tion but fail to do so in another examination conducted hours or even
minutes later (Giacino et al., 2014). For this reason, repeated CRS-R as-
sessments performed by trained and experienced caregivers are essen-
tial to establish a reliable final diagnosis (Giacino et al., 2004). Repeating
the assessment at least 5 times within a short period (e.g., 2 weeks) has
been shown to be most accurate for establishing a diagnosis in chronic
DOC patients (Wannez et al., 2016).

Despite the fact that the repeated CRS-R assessment is becoming
a standard for diagnosing DOC there is still a chance that patients are
incorrectly diagnosed as behaviorally unresponsive. Neuroimaging
studies have shown that up to 20% of behaviorally unresponsive pa-
tients still show signs of awareness based on their brain activations
(see Table 1, specificity). This is one reasonwhy somediagnoses depend
on the outcome of imaging or electrophysiological experiments. For ex-
ample, functional locked-in syndrome patients show extreme behavior-
al motor dysfunction but still have preserved higher cognitive functions
asmeasured by functional imaging (Bruno et al., 2011). Also, the results
of repeated CRS-R assessments are reported in varying ways. Some re-
port the patient’s consciousness state only on the day of data recording
while others only report the highest consciousness state measured
across the multiple assessments. Ideally, results from the CRS-R assess-
ment at the time of data recording and results of any repeated assess-
ments should be reported together to give the clearest picture of a
patient’s consciousness state over time.

Challenges and limitations of current practice

Diagnosing disorders of consciousness is a challenging problem for a
number of reasons which we will discuss shortly. These challenges will
also affect any machine learning methods applied to the data.

Lack of gold standard
Difficulty in establishing a reliable behavioral diagnosis of DOC, as

mentioned briefly before, is one of the main reasons for a lack of
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