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Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses
across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural
responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action rec-
ognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using
them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether
dorsal stream representations are shared between subjects. In order to address this question, we examine if in-
dividual subject predictions can be made in a common representational space estimated via hyperalignment.
Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream re-
sponds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream
areas. It is also demonstrated that models operating in a common representational space can generalize to re-
sponses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and
decoding settings, suggesting that a common representational space underlies dorsal stream responses across
multiple subjects.
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Introduction

The human visual system is devoted to the analysis of increasingly
complex properties of our environment as one moves from upstream to
downstream visual areas. Traditionally, the ventral visual pathway is hy-
pothesized to be devoted to object recognition and the dorsal visual path-
way is thought to be devoted tomotion processing and action recognition
(Mishkin et al., 1983; Haxby et al., 1991; Goodale and Milner, 1992).

An important question is what stimulus properties are processed as
one traverses these pathways toward more downstream areas. Recent-
ly, we have shown that deep neural networks (DNNs) (Schmidhuber,
2015; LeCun et al., 2015) can be used to predict with high accuracy
how voxels in different areas of the ventral stream respond to naturalis-
tic stimuli (Güçlü and van Gerven, 2015). Moreover, this analysis re-
vealed that artificial neurons in deeper hidden layers of the neural
network gave better predictions for more downstream areas.

It remains unclear, however, whether DNNs can also be used to
accurately predict neural responses across the dorsal stream up to and
including area MT. Furthermore, if this property holds, an interesting
secondary question is whether representations in particular visual
areas are highly individualized or rather shared between subjects. If
the latter is the case, then it may be possible to predict neural responses
in a particular subject using computational models that are estimated

using data from other subjects (Yamada et al., 2015). Furthermore, if
such a common representational space exists, decoding of stimuli
from observed neural responses can be improved by combining data
from multiple subjects.

The current paper addresses these questions using a sophisticated
computational model, commonly referred to as an encoding model
(Naselaris et al., 2011). The encoding model, depicted in Fig. 1, consists
of a deep convolutional neural network (Fukushima, 1980) that
nonlinearly maps stimuli to their constituent features, as well as a re-
sponse model that linearly maps features to observed blood–oxygen-
level-dependent (BOLD) responses.

The deep neural network was trained using tens of thousands of ac-
tion videos, yielding spatio-temporal filters that are important for action
recognition, ostensibly yielding a representation suitable for probing
dorsal stream responses. The linear mapping was estimated using data
by (Nishimoto et al., 2011) in which subjects were watching natural
movies. Estimation proceeded by first mapping data from different
number of subjects to a common representational space and then aver-
aging responses across subjects (Haxby et al., 2011). Next, deep neural
network features were regressed onto averaged responses.

Using this framework, we were able to show (1) the existence of a
correspondence between DNN layers and dorsal stream areas of indi-
vidual subjects such that deeper layers better predict downstream
areas and (2) the existence of a common representational space that
can facilitate the estimation of common models for individual subject
prediction such that responses of individual subjects to novel spatio-
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temporal stimuli can be predicted with models estimated from re-
sponses of other subjects in both encoding and decoding settings.

Material and methods

Data set

Weused the vim-2 data set (Nishimoto et al., 2014),whichwas orig-
inally published in Nishimoto et al. (2011). The experimental proce-
dures are identical to those in Nishimoto et al. (2011). Briefly, the data
set has twelve 600-s blocks of stimulus–response pairs in a training
set and nine 60-s blocks of stimulus–response pairs in a test set. Stimuli
are videos (128 px × 128 px or 20° × 20°, 15 FPS) that were drawn from
various sources. Responses are BOLD responses (voxel size =
2 × 2 × 2.5 mm3, TR = 1 s) that were acquired from occipital cortices
of three subjects (S1, S2 and S3). Stimuli in the test set were repeated
ten times. Responses in the test set were averaged across repetitions.

Stimuli in thedata setwere spatially downsampled to 112px×112px
and temporally upsampled to 16 FPS. Responses in the data set have al-
ready been preprocessed as described in (Nishimoto et al., 2011). Briefly,
they have been realigned to compensate for motion, detrended to com-
pensate for drift and z-scored. Additionally, the first six seconds of the
blocks were discarded. No further preprocessing was performed.

Regions of interests were localized using the multifocal retinotopic
mapping technique on retinotopic mapping data that were acquired in
separate sessions (Hansen et al., 2004). We restricted our analyses to
dorsal stream visual areas (V1, V2, V3, V3A, V3B and MT).

Hyperalignment

In addition to analyzing the data in the individual representational
spaces, we analyzed them in a common representational space (Haxby
et al., 2011). A representational spacemodel that uses Procrustes transfor-
mation for hyperaligning the data of the individual subjects to the com-
mon representational space was estimated from the training set per
cerebral hemisphere and visual area as follows: the common representa-
tional space was first set to the data of the individual subject that has the
most number of voxels (Table 1). The common representational space
was then iteratively updated. At each iteration, the data of the individual
subjects were first projected to the common representational space. The
common representational space was then set to the mean of the projec-
tions of the data of the individual subjects. After the final iteration, the
data of the individual subjectswere projected to the common representa-
tional space. PyMVPA (http://www.pymvpa.org)was used for representa-
tional space model estimation (Hanke et al., 2009).

Encoding

Feature model
We used a deep convolutional neural network for non-

linearly transforming stimuli to multiple layers of hierarchical feature
representations. The architecture of the DNN is identical to the C3D
architecture in (Tran et al., 2014). The architecture was developed
for learning generic features for video analysis, building on previous
insights in DNNs for image recognition. Here, we provide an overview

Fig. 1. Framework that combines feature, response and representational spacemodels. (A) Encodingmodel. (B) Convolutional neural network. Large boxes showa stimulus and featuremaps,
and numbers around them show their dimensionality. Similarly, small boxes and their projections show neurons, and numbers around them show their dimensionality. Number of feature
maps and neurons in each layer is indicated below the boxes. Note that the dimensionality of a neuron in a fully-connected layer is the same as that of the featuremaps in the previous layer.
Each neuron filters the feature maps in the previous layer and returns the corresponding feature map in the current layer. Transformations in each layer are indicated bottom-right of the
boxes: 1. Convolution. 2. Rectifier. 3. Max pooling. 4. Dot product. 5. Softmax function.

Table 1
Number of voxels per cerebral hemisphere and visual area. Bold numbers show the dimensionality of the corresponding cerebral hemisphere and visual area in the common representa-
tional space.

Left hemisphere Right hemisphere

V1 V2 V3 V3A V3B MT V1 V2 V3 V3A V3B MT

S1 494 726 598 92 104 197 514 781 562 160 152 152
S2 470 733 734 135 83 83 573 928 670 202 140 116
S3 653 746 504 164 88 166 713 650 637 118 138 64
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