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ABSTRACT

Multivariate pattern analysis techniques have been increasingly used over the past decade to derive highly sen-
sitive and specific biomarkers of diseases on an individual basis. The driving assumption behind the vast majority
of the existing methodologies is that a single imaging pattern can distinguish between healthy and diseased pop-
ulations, or between two subgroups of patients (e.g., progressors vs. non-progressors). This assumption effective-
ly ignores the ample evidence for the heterogeneous nature of brain diseases. Neurodegenerative,
neuropsychiatric and neurodevelopmental disorders are largely characterized by high clinical heterogeneity,
which likely stems in part from underlying neuroanatomical heterogeneity of various pathologies. Detecting
and characterizing heterogeneity may deepen our understanding of disease mechanisms and lead to patient-
specific treatments. However, few approaches tackle disease subtype discovery in a principled machine learning
framework. To address this challenge, we present a novel non-linear learning algorithm for simultaneous binary
classification and subtype identification, termed HYDRA (Heterogeneity through Discriminative Analysis). Neu-
roanatomical subtypes are effectively captured by multiple linear hyperplanes, which form a convex polytope
that separates two groups (e.g., healthy controls from pathologic samples); each face of this polytope effectively
defines a disease subtype. We validated HYDRA on simulated and clinical data. In the latter case, we applied the
proposed method independently to the imaging and genetic datasets of the Alzheimer's Disease Neuroimaging
Initiative (ADNI 1) study. The imaging dataset consisted of T1-weighted volumetric magnetic resonance images
of 123 AD patients and 177 controls. The genetic dataset consisted of single nucleotide polymorphism informa-
tion of 103 AD patients and 139 controls. We identified 3 reproducible subtypes of atrophy in AD relative to con-
trols: (1) diffuse and extensive atrophy, (2) precuneus and extensive temporal lobe atrophy, as well some
prefrontal atrophy, (3) atrophy pattern very much confined to the hippocampus and the medial temporal lobe.
The genetics dataset yielded two subtypes of AD characterized mainly by the presence/absence of the apolipopro-
tein E (APOE) &4 genotype, but also involving differential presence of risk alleles of CD2AP, SPON1 and LOC39095
SNPs that were associated with differences in the respective patterns of brain atrophy, especially in the
precuneus. The results demonstrate the potential of the proposed approach to map disease heterogeneity in neu-
roimaging and genetic studies.

© 2016 Elsevier Inc. All rights reserved.

Introduction

human brain. This is typically performed by either employing voxel-
based (VBA) or multivariate pattern analysis (MVPA) techniques.

Automated analysis of spatially aligned medical images has become
the main framework for studying the anatomy and function of the
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VBA complements region of interest (ROI) volumetry by providing a
comprehensive assessment of anatomical differences throughout the
brain, while not being limited by a priori regional hypotheses. VBA typ-
ically performs mass-univariate statistical tests on either tissue compo-
sition or deformation fields, aiming to reveal regional anatomical or
shape differences (Ashburner et al, 1998; Goldszal et al., 1998;
Ashburner and Friston, 2000; Davatzikos et al., 2001; Chung et al.,
2001; Fox et al., 2001; Job et al., 2002; Kubicki et al., 2002; Chung
et al., 2003; Studholme et al., 2004; Bernasconi et al., 2004; Giuliani
et al., 2005; Job et al., 2005; Meda et al., 2008; Ashburner, 2009). How-
ever, voxel-wise methods often suffer from low statistical power and
more importantly, ignore multivariate relationships in the data.
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On the other hand, MVPA techniques have gained significant atten-
tion due to their ability to capture complex relationships of imaging sig-
nals among brain regions. This property allows to better characterize
group differences and could potentially lead to improved diagnosis
and personalized prognosis. As a consequence, machine learning
methods have been used with increased success to derive highly sensi-
tive and specific biomarkers of diseases on individual basis (Mourao
Miranda et al., 2005; Kloppel et al., 2008; Davatzikos et al., 2008;
Vemuri et al., 2008; Duchesne et al., 2008; Sabuncu et al., 2009;
McEvoy et al., 2009; Ecker et al., 2010; Hinrichs et al., 2011; Cuingnet
etal, 2011).

A common assumption behind both VBA and MVPA methods is that
there is a single pattern that distinguishes the two contrasted groups. In
other words, most computational neuroimaging analyses assume a single
unifying pathophysiological process and perform a monistic analysis to
identify it. However, this approach ignores the heterogeneous nature of
diseases, which is supported by ample evidence. Typical examples of
brain disorders that are characterized by a heterogeneous clinical presen-
tation include both neurodevelopmental and neurodegenerative disor-
ders: autism spectrum disorder (ASD) comprises neurodevelopmental
disorders characterized by deficits in social communication and repetitive
behaviors (Geschwind and Levitt, 2007; Jeste and Geschwind, 2014);
schizophrenia and Parkinson's disease can be subdivided into distinct
groups by separating its symptomatology to discrete symptom domains
(Buchanan and Carpenter, 1994; Graham and Sagar, 1999; Koutsouleris
et al., 2008; Nenadic et al., 2010; Zhang et al., 2015; Lewis et al., 2005);
Alzheimer's disease (AD) can be separated into three subtypes on the
basis of the distribution of neurofibrillary tangles (Murray et al., 2011);
and mild cognitive impairment (MCI) may be further classified based
on the type of specific cognitive impairment (Huang et al., 2003;
Whitwell et al., 2007).

Disentangling disease heterogeneity may significantly contribute to
our understanding and lead to a more accurate diagnosis, prognosis
and targeted treatment. However, few research efforts have been fo-
cused on revealing the inherent disease heterogeneity. These ap-
proaches can be categorized into two distinct classes. The first class
assumes an a priori subdivision of the diseased samples into coherent
groups, based on independent (e.g., clinical) criteria, and opts to identify
group-level anatomical or functional differences using univariate statis-
tical methods (Huang et al., 2003; Koutsouleris et al., 2008; Nenadic
et al,, 2010; Whitwell et al., 2012; Zhang et al., 2015). As a consequence,
multivariate relationships in the data are ignored. Moreover, and more
importantly, these methods depend on an a priori disease subtype def-
inition, which may be either difficult to obtain (e.g., from autopsy near
the date of imaging), or noisy and non-specific (e.g., cognitive or clinical
evaluations). Methods belonging to the second class apply multivariate
clustering (typically driven by all image elements) directly to the dis-
eased population towards segregating subsets of distinct anatomical
subtypes (Graham and Sagar, 1999; Whitwell et al., 2007; Lewis et al.,
2005; Noh et al., 2014). Such an approach aims to cluster brain anato-
mies instead of pathological patterns. Thus, it has the potential risk of
estimating clusters that reflect normal inter-individual variability,
some of which is due to sex, age and other confounds, instead of
highlighting disease heterogeneity.

In order to tackle the aforementioned limitations, it is necessary to
develop a principled machine learning approach that is able to simulta-
neously identify a class of pathological samples and separate them into
coherent subgroups based on multivariate pathological patterns. To the
best of our knowledge, one approach has been previously proposed in
this direction (Filipovych et al., 2012). That work tackled disease sub-
type discovery by simultaneously solving classification and clustering
in a semi-supervised maximum margin framework. It jointly estimated
two hyperplanes, one that separates the diseased population from the
healthy one, and another hyperplane that splits the estimated diseased
population into two groups. Thus, only one linear classifier was used to
separate patients from controls, thereby limiting its ability to capture

heterogeneous pathologic processes. Moreover, it arbitrarily assumed
that exactly two disease subgroups exist, rather than attempting to de-
termine the number of subtypes from the data.

Here, we propose a novel non-linear semi-supervised?> machine
learning algorithm for integrated binary classification and subpopula-
tion clustering aiming to reveal heterogeneity through discriminant
analysis (HYDRA). To the best of our knowledge, ours is the first algo-
rithm to deal with anatomical/genetic heterogeneity in a supervised-
clustering fashion with arbitrary number of clusters. The proposed ap-
proach is motivated by recent machine learning methods that derive
non-linear classifiers through the use of multiple-hyperplanes (Fu
et al, 2010; Gu and Han, 2013; Varol and Davatzikos, 2014;
Kantchelian et al., 2014; Takacs, 2009; Osadchy et al., 2015). Classifica-
tion is performed through the separation of healthy controls from path-
ological samples by a convex polytope that is formed by combining
multiple linear max-margin classifiers. Heterogeneity is disentangled
by implicitly clustering pathologic samples through their association
to single linear sub-classifiers. Multiple dimensions of heterogeneity
may be captured by varying the number of estimated hyperplanes
(faces of the polytope). This is in contrast to non-linear kernel classifica-
tion methods which may accurately fit to heterogeneous data in terms
of disease prediction, but do not provide any explicit clustering informa-
tion that can be used to determine subtypes of pathology. HYDRA is a
hybrid between unsupervised clustering and supervised classification
methods; it can simultaneously fit maximum margin classification
boundaries and elucidate disease subtypes, which is not possible with
neither unsupervised clustering methods nor non-linear kernel
classifiers.

Note that a preliminary version of this work was presented in (Varol
et al,, 2015). The current paper extends our previous work in multiple
ways: (i) A more sophisticated initialization scheme based on
determinental point processes is employed (Sec. Appendix A.1); (ii)
the sensitivity to initialization due to the non-convexity of the objective
function has been improved by using multiple initializations and con-
sensus strategies (Sec. Appendix A.4); (iii) a symmetric version of the
algorithm is developed towards accounting for the heterogeneity of
the healthy controls and avoiding over-learning (Section 2.4); (iv) a de-
tailed description of the proposed methodology is provided; (v) we ex-
tensively evaluate our method, HYDRA, by using additional (imaging
and genetic) datasets and comparing it to unsupervised clustering and
non-linear classification methods.

The remainder of this paper is organized as follows. In Section 2, we
detail the proposed approach. Next, we experimentally validate our
method using synthetic (Section 3) and clinical (Section 4) data. We dis-
cuss the results in Section 5, while Section 6 concludes the paper with
our final remarks.

Method

In high dimensional spaces, the modeling capacity of linear support
vector machines (SVMs) is theoretically rich enough to discriminate be-
tween two homogeneous classes. However, while two classes are line-
arly separable with high probability, the resulting margin may be
small. This case arises, for example, when one class is generated by a
multimodal distribution that models a heterogeneous process (see
Fig. 1a). This may be remedied by the use of non-linear classifiers,
allowing for larger margins and thus, better generalization. However,
while kernel methods, such as Gaussian radial basis function (GRBF)
kernel SVM, provide non-linearity, they lack interpretability when
aiming to characterize heterogeneity.

2 The term semi-supervised is in reference to lack of disease subtype labels that must be
inferred from data.
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