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ABSTRACT

Densely seeded probabilistic tractography yields weighted networks that are nearly fully connected, hence
containing many spurious fibers. It is thus necessary to prune spurious connections from probabilistically-
derived networks to obtain a more reliable overall estimate of the connectivity. A standard method is to
threshold by weight, keeping only the strongest edges. Here, by measuring the consistency of edge weights
across subjects, we propose a new thresholding method that aims to reduce the rate of false-positives in group-
averaged connectivity matrices. Close inspection of the relationship between consistency, weight, and distance
suggests that the most consistent edges are in fact those that are strong for their length, rather than simply
strong overall. Hence retaining the most consistent edges preserves more long-distance connections than
traditional weight-based thresholding, which penalizes long connections for being weak regardless of anatomy.
By comparing our thresholded networks to mouse and macaque tracer data, we also show that consistency-
based thresholding exhibits the species-invariant exponential decay of connection weights with distance, while
weight-based thresholding does not. We also show that consistency-based thresholding can be used to identify
highly consistent and highly inconsistent subnetworks across subjects, enabling more nuanced analyses of
group-level connectivity than just the mean connectivity.

Introduction

Tractography is a widely-used method for inferring white matter
connectivity from diffusion imaging data, and is central to the field of
connectomics (Fornito et al., 2015). Various algorithms use voxel-
based estimates of water diffusion to infer the likely paths of white
matter bundles, either deterministically or probabilistically (Behrens
et al., 2003; Descoteaux et al., 2009). Regardless of the method, there is
uncertainty over which connections are “true” connections and which
are spurious (de Reus and van den Heuvel, 2013; Girard et al., 2014;
Smith et al., 2012). In particular, while deterministic tractography has
high specificity at the cost of sensitivity to crossing fibers and hence has
a high rate of false negatives, probabilistic algorithms yield inherently
noisy connection matrices, at least at the single subject level, and hence
likely contain numerous false positives (Thomas et al., 2014).

Pooling data over subjects is a common way to reduce the signal to
noise ratio, such as by averaging connectivity matrices across subjects
(Hagmann et al., 2008; Perry et al., 2015), or determining a consensus

connectivity by selecting edges that appear in at least some fraction of
the subjects (de Reus and van den Heuvel, 2013; van den Heuvel and
Sporns, 2011). Seeking a consensus in this way is problematic for
networks derived from densely-seeded probabilistic tractography,
where all individual subject-wise networks are densely connected.
The most common method in this setting is to “threshold” networks
to some desired density by keeping only the strongest links (Rubinov
and Sporns, 2010). This method is applicable to dense networks, but it
is not at all clear that the strongest links are always the most accurate
for inferring white matter connectivity (Gigandet et al., 2008).
Besides reducing spurious connections, thresholding connectivity
matrices also plays an important role in graph-based characterization
of connection topology (Bullmore and Bassett, 2011; Van Wijk et al.,
2010). Thresholding is used to determine binary adjacency matrices
associated with weighted networks, enabling use of the full armory of
graph-theoretic tools for unweighted networks (Rubinov and Sporns,
2010). Thresholding can also be used to identify subnetworks com-
posed of the strongest (or weakest) edges, whether for analysis of these
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subnetworks or simply for ease of visualization.

In this technical note, we propose a hybrid thresholding method
that seeks a group consensus connectivity by thresholding the averaged
network to retain only those connections whose weights are the most
consistent across the group. Unlike the popular weight-based thresh-
olding, our consistency-based thresholding pays heed to the within-
group intersubject variability when deriving a group-averaged matrix.
We show that our consistency-based approach avoids the “hard
threshold edge” imposed by traditional thresholding and preserves
the role of long-range connections. We also study the influence of
thresholding strategy on the network topology of the ensuing structural
connectome.

Methods

We derived estimates of whole brain structural connectivity from
diffusion images of 75 healthy subjects (aged 17-30 years, 47 females).
The structural connectivity matrices were derived in a recent study; we
briefly present the methods here but see Roberts et al. (2016) for full
details on the acquisition and tractography details.

Diffusion MRI data were acquired from all participants on a Philips
3 T Achieva Quasar Dual MRI scanner (Philips Medical System, Best,
The Netherlands) using a single-shot echo-planar imaging (EPI)
sequence (TR=7767 ms, TE=68 ms). For each diffusion scan, 32
gradient directions (b=1000s/mm?2) and a non-diffusion-weighted
acquisition (b=0s/mm2) were acquired over a 96x96 image matrix
(field of view 240 mmx240 mmx137.5 mm), with a slice thickness of
2.5 mm and no gap, reconstructed to yield 1 mmx1 mmx2.5 mm
voxels (where the longer dimension is along the dorsoventral axis).
Two sets of diffusion scans were acquired for each subject.

We employed a probabilistic streamline algorithm (Tournier et al.,
2012) to generate high-resolution whole-brain fiber tracks. The fiber
orientation distribution (FOD) within each voxel was estimated using
MRtrix software (Tournier et al., 2012) by performing constrained
spherical deconvolution (Tournier et al., 2007) with a maximum
spherical harmonic order (Imax) of 6. As an intermediate step to
constrain the spherical deconvolution, a single-fiber response kernel
was estimated from all white matter voxels with fractional anisotropy
FA > 0.7. Streamlines were seeded using the skull-stripped brain mask
together with a restriction to voxels with FOD amplitude >0.1.
Streamlines will not start outside this region and terminate if they
reach the boundary. Tractograms were generated using a probabilistic
streamlines algorithm (Tournier et al., 2012), which produces a set of
connection trajectories by randomly sampling from the orientation
uncertainty inherent in each FOD along the streamline paths. Although
non-isotropic voxels were used within the analysis, we subsequently
checked the resultant fiber orientations and tractograms, finding no
issue with potential biases on quality. To confirm this we repeated our
analysis in an independent dataset acquired with isotropic voxels
(Supplementary information 1).

Our connectivity matrices were reconstructed from densely seeded
tractography (10® seeds) and parcellated into a relatively fine repre-
sentation of 513 uniformly sized cortical and sub-cortical regions
(Zalesky et al., 2010). The resulting weighted, undirected matrices
were nearly fully connected in each subject. The weights are the
number of streamlines linking each pair of regions. The spatial
connection distance between all nodes was obtained using a stream-
line-based quantification of distance, in addition to the more tradi-
tionally-used Euclidean distance. In six subjects, for each pathway in
the connectome, the shortest streamline between the node pair was
found, and its length determined; these minimum lengths were then
averaged across the six subjects. The minimum streamline length per
subject was used here as streamlines are more likely to erroneously
continue beyond the length of the connecting pathway (and hence over-
estimate the actual connection length) rather than provide an erro-
neously short pathway. In previous work (Roberts et al., 2016) it was
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observed that the length distribution converged after averaging over a
small number of subject streamline lengths. Indeed, the precise details
of the length distribution do not influence our results, as demonstrated
in an independent dataset where we used every individual's own set of
streamlines (Supplementary information 1).

This combination of streamline generation and anatomical parcel-
lation yields a weighted structural connectivity graph within each
subject, which we denote W, and a corresponding matrix of streamline
lengths, F. Within each W, a weighted connection w;; represents the
number of streamlines from region i terminating within a 2 mm radius
of region j, with corresponding streamline length f;;. The 2 mm radius
ensures that fiber terminations near the gray-matter boundary, where
the diffusion signal becomes noisier and weaker, are adequately
captured. While this could theoretically lead to streamlines being
counted twice, our 513 node parcellation is sufficiently coarse that this
occurs very infrequently. To improve signal to noise ratio, the
corresponding w;; were summed across each subject’s two diffusion
scans. The non-directional nature of tractography implies that W is
symmetric — that is w;=wj;. The larger number of likely random seeds
located along longer fiber bundles is well known to result in over-
defined fiber densities (Smith et al., 2013). To reduce this confounding
effect, w;; were adjusted by dividing the raw count by the streamline
length f;; between nodes i and j, wy—wy;/f; (cf. Hagmann et al., 2008).
That is, because we seed the white matter uniformly, a tract that is
twice as long will have received twice as many seeds. Its weight
(streamline count) will thus have been biased relative to a shorter
tract with the same true fiber density.

We note that the very dense seeding of our probabilistic tracto-
graphy yields connectivity matrices that are fully connected (or very
nearly fully connected) in all subjects. Whilst the biological connectome
at this level of resolution is likely not fully connected, estimates of
connection density in the field range very broadly, from <5%
(Hagmann et al., 2008) to 13—36% for the entire brain and 32-52%
for cortico-cortical connections in the mouse (Oh et al., 2014). Seeding
probabilistic tractography densely, then setting a post-hoc threshold,
allows investigation of topology over a range of connection densities,
and not that dictated by the acquisition and reconstruction technique.

We estimated the consistency of every edge weight by measuring
the coefficient of variation across subjects. We then compared networks
thresholded by weight to networks thresholded by consistency. To
quantify differences in network topology, we calculated graph metrics
(clustering, rich club, modularity) using the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010).

Results

We begin by characterizing the consistency of edge weights across
subjects. We quantify consistency by calculating the coefficient of
variation (CV) of the weights (SD/mean) across subjects. A low CV
corresponds to a high consistency. Edge CV broadly decreases with
increasing edge weight (Fig. 1), thus showing that consistency increases
with edge weight. This is the widely-assumed justification for weight-
based thresholding; here we verify that the very strongest edges are
indeed the most consistent. However, this inverse relationship between
CV and weight does not follow a simple linear trend. Rather, edges with
weights two orders of magnitude below the strongest are almost as
consistent.

This slow fall-off of consistency with weight is particularly clear
when taking the spatial dimension into account. Weights decrease
roughly exponentially with streamline length as shown previously
(Roberts et al., 2016). However, CV increases more slowly with
distance, such that some of the longest connections are in fact the
most consistent (Fig. 2A). In a sense this is unsurprising: true long
connections would be expected to have consistent weights between
subjects. Grouping the edges by quartiles in consistency (Fig. 2A-D)
shows that each quartile's cloud of points spans almost the full range of
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