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A B S T R A C T

We propose a generalized reduced rank latent factor regression model (GRRLF) for the analysis of tensor field
responses and high dimensional covariates. The model is motivated by the need from imaging-genetic studies to
identify genetic variants that are associated with brain imaging phenotypes, often in the form of high
dimensional tensor fields. GRRLF identifies from the structure in the data the effective dimensionality of the
data, and then jointly performs dimension reduction of the covariates, dynamic identification of latent factors,
and nonparametric estimation of both covariate and latent response fields. After accounting for the latent and
covariate effects, GRLLF performs a nonparametric test on the remaining factor of interest. GRRLF provides a
better factorization of the signals compared with common solutions, and is less susceptible to overfitting
because it exploits the effective dimensionality. The generality and the flexibility of GRRLF also allow various
statistical models to be handled in a unified framework and solutions can be efficiently computed. Within the
field of neuroimaging, it improves the sensitivity for weak signals and is a promising alternative to existing
approaches. The operation of the framework is demonstrated with both synthetic datasets and a real-world
neuroimaging example in which the effects of a set of genes on the structure of the brain at the voxel level were
measured, and the results compared favorably with those from existing approaches.

1. Introduction

The past decade has witnessed the dawn of the big data era.
Advances in technologies in areas such as genomics and medical
imaging, among others, have presented us with an unprecedentedly
large volume of data characterized by high dimensionality. This not
only brings opportunities but also poses new challenges to scientific
research. Neuroimaging-genetics, one of the burgeoning interdisciplin-
ary fields emerging in this new era, aims at understanding how the
genetic makeup affects the structure and function of the human brain
and has received increasing interest in recent years.

Starting with candidate gene and candidate phenotype studies,

imaging-genetic methods have made significant progress over the years
(Thompson et al., 2013; Liu and Calhoun, 2014; Poline et al., 2015).
Different strategies have been implemented to combine the genetic and
neuroimaging information, producing many promising results (Hibar
et al., 2015; Richiardi et al., 2015; Jia et al., 2016). Using a few
summary variables of the brain features is the most popular approach
in the literature (Joyner et al., 2009; Potkin et al., 2009; Vounou et al.,
2010); voxel-wise and genome-wide association approaches offer a
more holistic perspective and are used in exploratory studies (Hibar
et al., 2011; Vounou et al., 2012); multivariate analyses have also been
used to capture the epistatic and pleiotropic interactions, therefore
boosting the overall sensitivity (Hardoon et al., 2009; Ge at al.,
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2015a,b). Apart from the population studies, family-based studies offer
additional insights on the genetic heritability (Ganjgahi et al., 2015).
Recently, a few probabilistic approaches have been proposed to jointly
model the interactions between genetic factors, brain endophenotypes
and behavior phenotypes (Batmanghelich et al., 2013, Stingo et al.,
2013), and some Bayesian methods originally developed for eQTL
studies can also be applied to imaging-genetic problems (Zhang and
Liu, 2007; Jiang and Liu, 2015).

The trend in imaging-genetics is to embrace brain-wide genome-
wide association studies with multivariate predictors and responses,
but this is challenged by the combinatorial complexity of the problem.
For example, the probabilistic formulations do not scale well with
dimensionality; and standard brute force massive univariate ap-
proaches (Stein et al., 2010a; Vounou et al., 2012) treat each voxel
and predictor as independent units and compute pairwise significance,
and the loss of spatial information and the colossal multiple compar-
ison corrections involved have high costs in terms of sensitivity (Hua
et al., 2015). Various attempts have been made to remedy this. Some
approaches involve dimension reduction techniques, which either first
embed genetic factors onto some lower dimensional space using
methods such as principal component analysis (PCA) before subse-
quent analyses (Hibar et al., 2011), or jointly project genetic factors
and imaging traits by methods such as parallel independent component
analysis (pICA), canonical correlation analysis (CCA) and partial least
square (PLS) (Liu et al., 2009; Le Floch et al., 2012, 2013). These
methods often lack model interpretability. Other popular approaches
enforce penalties or constraints to regularize the solutions, for example
(group) sparsity or rank constraints (Wang et al., 2012a,b; Vounou
et al., 2012; Lin et al., 2015; Huang et al., 2015). But they are usually
difficult to compute and the significance of the findings cannot be
directly evaluated.

One path towards more efficient estimation for brain-wide associa-
tion, both in the statistical and computational sense, is to exploit the
inherent spatial structure from the neuroimaging data. Two prominent
examples in this direction are random field theory based methods
(Worsley et al., 1996, Penny et al., 2011; Ge et al., 2012) and functional
based methods (Wahba, 1990; Ramsay and Silverman, 2005; Reiss and
Ogden, 2010) where the smoothness of the data is considered. Random
field methods are established as the core inferential tool in neuroima-
ging studies. These methods correct the statistical thresholds based on
the smoothness estimated from the images, resulting in increased
sensitivity. Functional based methods explicitly use smooth fields
parametrized by smooth basis functions in the model, thereby regular-
izing the solution and simplifying the estimation at the same time.
Related to functional methods are tensor-based methods (Zhou et al.,
2013; Li, 2014) and wavelet-based methods (Van De Ville et al., 2007;
Wang et al., 2014), where either low rank tensor factorization or a
wavelet basis is used to approximate the spatial field of interest.

Long overlooked in neuroimaging studies, including imaging-
genetics, is the influence from unobservable latent factors
(Bhattacharya and Dunson et al., 2011; Montagna et al., 2012). An
illustrative cartoon is presented in Fig. 1 for a typical neuroimaging-
genetic case, in which the effect of interest is usually small compared
with the total variance. This is known as low signal to noise ratio
(SNR). Large-scale multi-center collaborations have become a common
practice in the neuroimaging community (Jack et al., 2008; Michael
et al., 2012; Van Essen et al., 2013; Thompson et al., 2014) and
increasing numbers of researchers are starting to pool data from
different sources. The heterogeneity of the data introduces large
unexplained variance originating from population stratification or
cryptic relatedness, for example genetic background, medical history,
traumatic experiences and environmental impacts. Such variance
aggregates the SNR issue and confuses the estimation procedures if
unaccounted for. However these confounding factors are usually
difficult or costly to quantify, and therefore they are hidden from the
data analysis in most, if not all, studies.

To see how the latent factor-induced variance undermines the
power of statistical procedures, let us take the most commonly used
least squares regression as an example. Assume the model
Y Xβ L E= + + , where Y is the response, X is the predictor of interest,
β is the regression coefficient, L is the unobservable latent factor and E
is the noise term. In the absence of knowledge regarding L, the
alternative model Y Xβ E= +∼ ∼

is estimated instead, where E L E= +∼
.

Assuming independence between X L, and E, we have
E L Evar[ ] = var[ ] + var[ ]∼

, where var[·] measures the variance. Denote
β the oracle estimator where the true model is fit with the knowledge of

L and β∼ the estimator for the alternative model, the asymptotic theory
of least square estimator tells us β β E X X∼ ( , var[ ]( ′ ) )−1 and

β β E X X∼ ( , var[ ]( ′ ) )∼ ∼ −1 as the sample size goes to infinity, that is to

say β∼ is more variable than β and converges slowly to the population
mean. See Fig. 2 for a graphical illustration.

Solutions have been proposed to alleviate the loss of statistical
efficiency caused by latent factors. In Zhu et al. (2014) the authors
propose to dynamically estimate the latent factors from the observed
data. However this approach is based on Markov chain Monte-Carlo
(MCMC) sampling, and therefore the computational cost is prohibitive
for high dimensional tensor field applications. In the eQTL literature,
several methods that explicitly account for the hidden determinants
have been developed. Following a Bayesian formulation, Stegle et al.
(2010) factors out the hidden effect; Fusi et al. (2012), however,
computes the ML estimate of hidden factors by marginalizing out the
regression coefficients and then using the estimated hidden factors to
construct certain covariance matrices for subsequent analyses. These
studies are not concerned with the spatial structure and the inherent
dimensionality of the model, and the results depend on the choice of
parameters for the prior distributions. Additionally, these studies
consider latent effect as “variance of no interest”, but as we will see
in later sections, the latent structure also contains vital information and
therefore should not be simply disregarded as unwanted variance.

In this article, we formulate a new generalized reduced rank latent
factor regression model (GRRLF) for high dimensional tensor fields.
Our method exploits the spatial structure of the neuroimaging data and
the low rank structure of the regression coefficient matrix, which
computes the effective covariate space, improves the generalization
performance and leads to efficient estimation. The model works for
general tensor field responses which include a wide range of imaging
modalities, i. e. MRI, EEG, PET, etc. Although motivated by imaging-
genetic applications, the proposed GRRLF is thus widely applicable to
almost all types of neuroimaging studies. The estimation is carried out
via minimizing a properly defined loss function, which includes
maximum likelihood estimation (MLE) and penalized likelihood
estimation (PLE) as special cases.

The contributions of this paper are four-fold. Firstly, we introduce
field-constrained latent factor estimation for high dimensional tensor
field regression analysis. It efficiently explains the covariance structure
in the data caused by the hidden structures. Secondly, our model
integrates dimension reduction, that not only improves the statistical
efficiency but also facilitates model interpretability. Thirdly, we provide
several implementations to efficiently compute the solution under
constraints, including Riemannian manifold optimization (Absil
et al., 2009) and nuclear norm regularization which are both based
on manifold optimization. We highlight the flexibility of using manifold
optimization to formulate neuroimaging problems, which can lead to
further interesting applications. Lastly, we present an efficient kernel
approach for brain-wide genome-wide association studies under the
GRRLF framework and apply it to the ADNI dataset. Empirical results
provide evidence that the kernel GRRLF approach is capable of
capturing the interactions that can be missed in conventional studies.

The rest of the paper is organized as follows. In Section 2, we detail
the model formulation and estimation. In Section 3, the proposed
method is evaluated with both synthetic and real-world examples and
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