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a b s t r a c t

Head motion is a significant source of noise in the estimation of functional connectivity from resting-
state functional MRI (rs-fMRI). Current strategies to reduce this noise include image realignment, cen-
soring time points corrupted by motion, and including motion realignment parameters and their deri-
vatives as additional nuisance regressors in the general linear model. However, this nuisance regression
approach assumes that the motion-induced signal changes are linearly related to the estimated rea-
lignment parameters, which is not always the case. In this study we develop an improved model of
motion-related signal changes, where nuisance regressors are formed by first rotating and translating a
single brain volume according to the estimated motion, re-registering the data, and then performing a
principal components analysis (PCA) on the resultant time series of both moved and re-registered data.
We show that these “Motion Simulated (MotSim)” regressors account for significantly greater fraction of
variance, result in higher temporal signal-to-noise, and lead to functional connectivity estimates that are
less affected by motion compared to the most common current approach of using the realignment
parameters and their derivatives as nuisance regressors. This improvement should lead to more accurate
estimates of functional connectivity, particularly in populations where motion is prevalent, such as pa-
tients and young children.

& 2016 Published by Elsevier Inc.

Introduction

In-scanner head motion has been shown to be one of the lar-
gest sources of noise in resting-state functional magnetic re-
sonance imaging (rs-fMRI). This challenge has recently been a
topic of tremendous interest, in large part because even small
amounts of movement can cause significant distortions to esti-
mates of functional connectivity, and because uncorrected motion-
related signals can bias group results if there are differences in
head motion; see Maclaren et al. (2013) and Power et al. (2015) for
review. Small, but significant, motion-related signal changes can
remain even after realigning the images using rigid-body or affine
transforms.

The most common current approach to deal with the residual
motion-related signal changes is to regress out the 6 rigid body
realignment parameters (3 translations and 3 rotations), as well as
their temporal derivatives. Other variants of this approach ad-
ditionally include time-shifted and/or squared versions of these
motion parameters (Friston, 1996). However, these approaches

assume that the motion-related signal changes are linearly related
to the realignment parameters. This is not always the case. For
example, at a curved edge of image contrast where motion in one
direction causes a signal increase, the same motion in the opposite
direction may not produce the same decrease, or even a decrease
at all. Similarly, in a region with a nonlinear gradient in image
intensity, a displacement in one direction would not produce the
same magnitude signal change as a displacement in the opposite
direction. Motion can result in sampling different proportions of
tissue classes at any given location. Depending on the proportions
sampled, resulting signal changes might be positive, negative or
neither.

In this study, we develop an improved model of motion-related
signal changes. First, in an approach similar to Wilke et al., we
derive a voxel-wise estimate of the signal changes induced by the
head motion during the scan by taking one of the acquired echo-
planar imaging volumes and rotating and translating it according
to the negative of the estimated motion parameters (Wilke, 2012).
We will call this the “motion simulated” (MotSim) dataset. This
MotSim dataset models the motion-related signal changes in the
original data that are entirely due to motion. The MotSim dataset
is then motion corrected with rigid body volume registration
(MotSimReg). This MotSimReg dataset, which has been rotated
and translated according to the estimated subject motion, and
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then re-registered, reflects imperfections introduced by inter-
polation and errors in estimating the motion (Grootoonk et al.,
2000).

Three new models of motion-related signal changes will be
evaluated and compared against the current common approach of
including the 6 realignment parameters and their derivatives.
Specifically, we derive nuisance regressors from 1) a temporal
principal components analysis (PCA) of all brain voxels in the
MotSim dataset (the “forward” model), 2) a PCA of the volume
registered MotSim dataset (the “backward” model), and 3) a PCA of
both the “forward” and “backward” models spatially concatenated
(the “both” model). The use of temporal PCA to reduce a large array
of potential noise regressors has been used previously for noise
reduction in fMRI (e.g. to derive nuisance regressors from CSF and
white matter in the CompCor technique, (Behzadi, 2007)); the
beauty with the proposed MotSim PCA approach is that the noise
time series are purely derived from the estimated subject motion
and thus are unlikely to contain signals of interest (unless of
course the neural signals of interest are correlated with the
motion).

Materials and methods

Participants

Written informed consent was obtained from subjects prior to
each scanning session in accordance with a University of Wis-
consin Madison IRB approved protocol. Fifty-five healthy adults
(27 females; 40.9717.5 years of age on average, range: 20–77
years) with no history of neurological or psychological disorders
were scanned.

Data acquisition

Each subject was instructed to lie still in the scanner while
keeping her or his eyes fixated on a cross. This resting condition
(eyes open and fixating) has been shown to yield slightly more
reliable results compared to either eyes closed or eyes open
without fixation (Patriat et al., 2013). Each subject was scanned
twice within the same session. All the scans were acquired using a
3 T GE MRI scanner (MR750, General Electric Medical Systems,
Waukesha, WI). Each functional scan was 10 min in length and
acquired with the same echo planar imaging (EPI) sequence
(TR¼2.6 s, TE¼25 ms, flip angle¼60°, FOV¼224 mm�224 mm,
matrix size¼64�64, slice thickness¼3.5 mm, number of
slices¼40). T1-weighted structural images were acquired before
the functional images using an MPRAGE sequence with the fol-
lowing parameters: TR¼8.13 ms, TE¼3.18 ms, TI¼450 ms, flip
angle¼12°, FOV¼256 mm�256 mm, matrix size¼256�256,
slice thickness¼1 mm, and number of slices¼156.

Motion dataset (MotSim)

In this study, we introduce new motion correction methods by
extracting regressors from a dataset containing signal fluctuations
solely due to motion. This motion dataset, that we refer to as,
MotSim, was previously suggested by Wilke (Wilke, 2012). This
motion dataset is obtained by extracting one volume from the
original data and creating a 4D dataset by moving this one volume
according to the inverse of the estimated 6 parameters of motion
(Fig. 1). For the purpose of our study, the 4th volume, which also
served as base for the motion realignment procedure, was chosen
after the first two steps of preprocessing (removing the first three
time points and performing slice-timing correction). We used
linear interpolation for the resampling, the default in AFNI's

3dWarp. In a follow-up analysis, we repeated this using 5th order
interpolation, and the main results were unchanged.

Motion regressors

In this study, four motion correction models were compared, all
with the same number of regressors used the current standard
(see model i). The models studied here are:

i. 12mot: 6 parameters of motion derived from the re-alignment
procedureþthe derivative of each of these parameters.

ii. 12Forw: First 12 principal components over the whole brain of
the MotSim dataset (“forward model”).

iii. 12Back: First 12 principal components over the whole brain
after realigning the MotSim dataset, resulting in MotSimReg
(“backward model”). Note that the realignment is estimated
from the MotSim dataset, rather than applying the inverse of
the transform that created the MotSim dataset.

iv. 12Both: First 12 principal components over the whole brain
after spatial concatenation of the motion dataset and the rea-
ligned MotSim dataset time series (“combined forward and
backward model”).

12Forw and 12Back differ from each other in that 12Forw re-
presents the MotSim dataset in its entirety whereas 12Back only re-
presents residual motion, such as interpolation errors and errors in
the estimation of the amount of motion. Finally, 12Both contains the
regressors explaining the most variance across 12Forw and 12Back.

A temporal principal component analysis (PCA) generates a set
of linear, uncorrelated components that reflect the main features
of signal variations of the motion dataset. PCA has the benefit to
minimize mutual information between the different principal
components (PCs). The PCs are generated in order of decreasing
variance explained (e.g. PC14PC24PC3…). Such a PCA decom-
position approach has previously been used to derive nuisance
regressors from CSF and other high variance voxels, primarily to
model physiological noise (Behzadi, 2007). Here we use this idea
to specifically derive noise regressors that will best model the
signal changes induced by subject motion, and we evaluate the
effectiveness of this approach at reducing the influences of subject
motion. The principal components in the MotSim models were
determined from a temporal PCA of all brain voxels, including edge
voxels dilated 2 voxels out from the brain. We chose the first 12
principal components of each of the MotSim models in order to
keep the number of nuisance regressors the same as the com-
monly used 12mot model (6 realignment parameters and their
derivatives). An additional model that has been suggested is the
use of the 6 realignment parameters, the realignment parameters
at the previous time point, and the square of each of these re-
gressors (Friston, 1996), which we will call 24mot. We will ad-
ditionally evaluate this model, as well as using the first 24 prin-
cipal components of the ‘Both’ model (24Both) in order to match
the number of nuisance regressors.

Data preprocessing

Preprocessing of the rs-fMRI data was implemented using the
software AFNI (Cox, 1996) (Fig. 2). The preprocessing steps in-
cluded: removal of the first 3 volumes of data to remove the initial
transient in the MR signal; slice-timing correction to correct tim-
ing difference due to an interleaved acquisition of slices within a
volume; within-run volume registration to reduce the influence of
subject motion within the scanner; motion regression; T1-to-EPI
alignment; normalization of T1 data to a common MNI template
space, and corresponding normalization of EPI data; spatial blur-
ring (6 mm fwhm); and nuisance regression (with censoring,
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