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a b s t r a c t

This paper deals with EEG source localization. The aim is to perform spatially coherent focal localization
and recover temporal EEG waveforms, which can be useful in certain clinical applications. A new hier-
archical Bayesian model is proposed with a multivariate Bernoulli Laplacian structured sparsity prior for
brain activity. This distribution approximates a mixed ℓ20 pseudo norm regularization in a Bayesian
framework. A partially collapsed Gibbs sampler is proposed to draw samples asymptotically distributed
according to the posterior of the proposed Bayesian model. The generated samples are used to estimate
the brain activity and the model hyperparameters jointly in an unsupervised framework. Two different
kinds of Metropolis–Hastings moves are introduced to accelerate the convergence of the Gibbs sampler.
The first move is based on multiple dipole shifts within each MCMC chain, whereas the second exploits
proposals associated with different MCMC chains. Experiments with focal synthetic data shows that the
proposed algorithm is more robust and has a higher recovery rate than the weighted ℓ21 mixed norm
regularization. Using real data, the proposed algorithm finds sources that are spatially coherent with
state of the art methods, namely a multiple sparse prior approach and the Champagne algorithm. In
addition, the method estimates waveforms showing peaks at meaningful timestamps. This information
can be valuable for activity spread characterization.

& 2016 Elsevier Inc. All rights reserved.

1. Introduction

EEG source localization problem has attracted considerable
attention in the literature resulting in a wide range of methods
developed in the last years. These can be classified into two
groups: (i) the dipole-fitting models that represent the brain ac-
tivity as a small number of dipoles with unknown positions; and
(ii) the distributed-source models that represent the brain activity
as a large number of dipoles in fixed positions. Dipole-fitting
models (Sommariva and Sorrentino, 2014; da Silva and Van Rot-
terdam, 1998) try to estimate the amplitudes, orientations and
positions of a few dipoles that explain the measured data. Un-
fortunately, the corresponding estimators are very sensitive to the
initial guess of the number of dipoles and their initial locations
(Grech et al., 2008). On the other hand, the distributed-source
methods model the brain activity using a large number of dipoles
with fixed positions and try to estimate their amplitudes (Grech
et al., 2008) by solving an ill-posed inverse problem. One of the
most simple ways to solve this inverse problem is to use an ℓ2
norm regularization as the minimum norm estimator (Pascual-

Marqui, 1999) or its variants Loreta (Pascual-Marqui et al., 1994)
and sLoreta (Pascual-Marqui et al., 2002). However, these methods
usually overestimate the active area size (Grech et al., 2008).

Sparsity constraints can remedy the overestimation issue when
dealing with applications with discretely localized activity such as
certain kinds of epilepsy (Berg et al., 2010). In distributed activity ap-
plications, promoting sparsity should provide spatially coherent loca-
lization even though it is unable to estimate the activity extension. To
apply sparsity, ideally an ℓ0 pseudo norm regularization (Candes,
2008) should be used. Unfortunately, this procedure is intractable in
an optimization framework. As a consequence, the ℓ0 pseudo norm is
usually approximated by the ℓ1 norm via convex relaxation (Uutela
et al., 1999), even if the two regularizations do not always provide the
same solution (Candes, 2008). In a previously reported work, we
proposed to combine them in a Bayesian framework (Costa et al.,
2015), using the ℓ0 pseudo norm to locate the non-zero positions and
the ℓ1 norm to estimate their amplitudes. However the methods
studied in Candes (2008), Uutela et al. (1999), and Costa et al. (2015)
consider each time sample independently leading in some cases to
unrealistic solutions (Gramfort et al., 2012).

To improve source localization, it is possible to make use of the
temporal structure of the data. This can be done by considering
sparse Bayesian learning using multiple measurement vectors
(Zhang and Rao, 2011) or by using the STOUT (Castaño-Candamil
et al., 2015) and dMAP-EM (Lamus et al., 2012) methods that apply
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physiological considerations to the source representation. It is also
possible to model the time evolution of the dipole activity and es-
timate it using Kalman filtering (Galka et al., 2004; Long et al.,
2011), particle filters (Somersalo et al., 2003; Sorrentino et al., 2013;
Chen and Godsill, 2013) or by encouraging spatio-temporal struc-
tures by promoting structured sparsity (Huang and Zhang, 2010).

Structured sparsity has been shown to improve results in several
applications including audio restoration (Kowalski et al., 2013), image
analysis (Yu et al., 2012) and machine learning (Huang et al., 2011).
Structured sparsity has also been applied to M/EEG source localiza-
tion by Gramfort et al. by using the ℓ21 mixed norm (Gramfort et al.,
2012). This approach promotes sparsity among different dipoles (via
the ℓ1 portion of the norm) and groups all the time samples of the
same dipole together, forcing them to be either jointly active or in-
active (with the ℓ2 norm portion). This work was reconsidered by the
same authors yielding the iterative reweighted mixed norm esti-
mator (Strohmeier et al., 2014) and the time–frequency mixed-norm
estimator (Gramfort et al., 2013). However, all these methods require
the manual tuning of the regularization parameters.

Several Bayesian methods have also been used to solve the inverse
problem (Friston et al., 2008; Stahlhut et al., 2013; Wipf et al., 2010;
Lucka et al., 2012). Friston et al. (2008) developed the multiple sparse
priors (MSP) approach, in which they segment the brain into different
pre-defined regions and promote all the dipoles in each region to be
active or inactive jointly. In contrast, Wipf et al. developed the
Champagne algorithm to promote activity to be concentrated on a
sparse set of dipoles (Wipf et al., 2010). Lucka et al. (2012) studied a
hierarchical Bayesian model (HBM) offering significant improvements
over established methods such as MNE and sLoreta.

Similar to Wipf et al., this paper develops a new method en-
couraging sparse activity considering each dipole separately (Friston
et al., 2008). The proposed method uses a multivariate Bernoulli
Laplace prior (approximating the weighted ℓ20 mixed norm) for the
dipole amplitudes without assuming any additional prior informa-
tion such as the amount or position of the active dipoles. Since the
parameters of the proposed model cannot be computed with
closed-form expressions, we investigate a Markov chain Monte
Carlo sampling technique to draw samples that are asymptotically
distributed according to the posterior of the proposed model. Then
the brain activity, the model parameters and hyperparameters are
jointly estimated in an unsupervised framework. In order to avoid
the sampler to becoming stuck around local maxima, specific Me-
tropolis–Hastings moves are introduced. These moves significantly
accelerate the convergence speed of the proposed sampler. From
the medical point of view, the proposed approach aims at providing
the localization of the main sources of the brain activity to help
making decisions when selecting candidate patients for recessive
surgery, in the case of discretely localized epilepsy (Berg et al.,
2010). In addition, considering several time samples simultaneously
allows us to estimate the temporal waveforms of the activity. Esti-
mating these waveforms can be useful in some clinical applications,
such as the estimation of the spread patterns of the activity in
epilepsy (Quintero-Rincón et al., 2016).

The paper is organized as follows: Section 2 presents the
proposed Bayesian model. Section 3 introduces the partially
collapsed Gibbs sampler used to generate samples distributed
according to the posterior of this model and the Metropolis–
Hastings moves that are used to accelerate the convergence of
the sampler. Experimental results conducted for both synthetic
and real data are presented in Section 4. Conclusions are finally
reported in Section 5.

2. Proposed method

EEG source localization is an inverse problem consisting in
estimating the brain activity of a patient from EEG measurements

taken from M electrodes during T time samples. In a distributed
source model, the brain activity is represented by a finite number
of dipoles located at fixed positions on the brain cortex. More
precisely, we consider N dipoles located on the cortical surface and
oriented orthogonally to it (see Hallez et al., 2007 for motivation).
The EEG measurement matrix ∈ ×Y M T can be written as

= + ( )Y H X E 1

where ∈ ×X N T contains the dipole amplitudes, ∈ ×H M N is the
lead-field matrix and E is the additive noise.

2.1. Likelihood

It is very classical to assume that the noise samples are in-
dependent and identically distributed according to a Gaussian
distribution (Grech et al., 2008). Note that when this assumption
does not hold it is possible to estimate the noise covariance matrix
from measurements that do not contain the signal of interest and
use it to whiten the data (Maris, 2003). Denoting as sn

2 the noise
variance, the independence assumption leads to the likelihood
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where M is the identity matrix of size M and θ σ= { }X, n
2 contains

the unknown parameters.

2.2. Prior distributions

2.2.1. Brain activity X
To promote structured sparsity of the source activity, we con-

sider the weighted ℓ20 mixed pseudo-norm
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2 is a weight introduced to compensate the depth-
weighting effect (Grech et al., 2008; Uutela et al., 1999) and #
denotes the cardinal of the set . Since this prior leads to in-
tractable computations, we propose to approximate it by a mul-
tivariate Laplace Bernoulli prior for each row of X1
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where ∝ means “proportional to”, λ is the parameter of the ex-
ponential distribution and ∈ { }z 0, 1 N is a vector indicating if the
rows of X are non-zero. To make the analysis easier we introduce

the hyperparameter = σ
λ
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The elements zi are then assigned a Bernoulli prior with parameter
ω ∈ [ ]0, 1

( )ω ω( | ) = | ( )f z z . 6i i

Note that the Dirac delta function δ ( ). in the prior of xi promotes
sparsity while the Laplace distribution regulates the amplitudes of
the non-zero rows. The parameter ω allows the importance of these
two terms to be balanced. In particular, ω = 0 yields =X 0 whereas
ω = 1 leads to the Bayesian formulation of the group-lasso (Yuan

1 In this paper, we will denote as mi the i-th row of the matrix M and as m j its
j-th column.
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