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The photoacoustic effect is governed a pair of coupled [1–3]
differential equations for the temperature t and the pressure p

given by
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where c is the sound speed, g is the heat capacity ratio, r is the
density, b is the thermal expansion coefficient, Cp is the specific
heat capacity, K is the thermal conductivity, and H is the energy
deposited per unit volume and time by radiation source. Except for
extremely small bodies, the time scale for heat diffusion is much
longer than that for sound generation, hence, the properties of the
photoacoustic pressure are commonly determined by assuming
the thermal conductivity to be zero, in which case the coupled
equations reduce [4] to a single wave equation
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obviating solution to the fourth order equation [1,5] that
corresponds to Eqs. 1.

It has recently been shown in the case of optically thin fluid
bodies immersed in transparent fluids that large amplitude
compressive transients are found on the leading edges of the
photoacoustic waveforms that are not accounted for by
Eq. 2. Despite the fact that production of the photoacoustic effect

with pulsed lasers has been intensely investigated [6–8] since the
19700s, the existence of the compressive transients has only been
reported recently. It is likely that such transients had not been
previously reported owing to the fact that slight misalignment of a
plane transducer with respect to a plane absorbing object results in
integration of the transient in time, reducing its amplitude so it is
not evident from examination of the photoacoustic waveform. In
fact, it was shown [9–11] that misalignment of a plane polyvinyli-
dene fluoride (PVDF) transducer by as little as one degree resulted
in the complete disappearance of the transient on the wave
recorded from a weakly absorbing glass flat. As the disappearance
of the transient is caused by its integration over the plane surface of
the transducer, recording the wave with a small diameter
transducer can be expected to alleviate this difficulty. With
spherically or cylindrically symmetric objects, observation of the
transients would require the geometry of the transducer to be
matched to that of the irradiated object.

In so far as determining the origin of the transients, it was
shown in Refs. [12,11,10] that their presence could be accounted
for by taking into account heat conduction in the region of the
irradiated object nearest the interface between the absorbing
object and the transparent fluid. By keeping the heat conduction
term in Eqs. 1 and approximating the heat capacity ratio as unity, it
was shown that the coupled equations reduce to the wave
equation
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A B S T R A C T

Irradiation of an optically thin layer immersed in a transparent fluid with pulsed laser radiation can

generate photoacoustic waves through two mechanisms. The first of these is the conventional optical

heating of the layer followed by thermal expansion, in which the mechanical motion of the expansion

launches a pair of oppositely directed sound waves. A second, recently reported mechanism, is operative

when heat is conducted to the transparent medium raising its temperature, while at the same time

reducing the temperature in the absorbing body. The latter mechanism has been shown to result in

compressive transients at the leading edges of the photoacoustic waveforms. Here the photoacoustic

effect produced by irradiating thin metal films which undergo negligible thermal expansion under

optical irradiation, but which generate sound solely by the heat transfer mechanism is investigated.

Solution to the wave equation for the photoacoustic effect from the heat transfer mechanism is given and

compared with the results of experiments using nanosecond laser pulses to irradiate thin metal films.
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which contains two source terms, the one found in Eq. 2 and a new
term dependent on both the space and time derivatives of the
temperature as well as the thermal diffusivity x. The work reported
in Refs. [12,11,10] was restricted to determining the character of
the transients when, following short pulse irradiation of an
optically thin target, the temperature at the surface of the
irradiated object decreased, while that of the liquid in contact
with its surface increased. Here we investigate the solution of Eq. 3
for the case of delta function deposition of heat in space and time
where only a temperature increase in the fluid surrounding target
is considered.

The deposition of heat as a delta function in space can be
described by considering a layer whose absorption coefficient
tends to infinity while its thickness approaches zero, with the
product of the two remaining finite. This product gives a
dimensionless quantity denoted â: The heating function for a
laser pulse with a fluence E0 irradiating a delta function layer can
be written

Hðx; tÞ ¼ âE0dðxÞdðtÞ: (4)

The heat diffusion equation, which determines t in Eq. 3, is
given by
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which, for the heating function given by Eq. 4, gives the well-
known solution [13]
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In determining the photoacoustic effect from short pulse
excitation, it is convenient to work with the velocity potential w,
which is governed by the wave equation
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where the acoustic pressure [14] is determined from w through
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The solution for the conventional photoacoustic effect,
which arises from the first term on the right of Eq. 7, can be
found by integrating this term over the Green’s function for the
one-dimensional wave equation [15], giving the velocity
potential as
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where the factor in brackets containing the Heaviside function u is
the Green’s function (divided by 2pc) for the one-dimensional
wave equation. By differentiating w with respect t, the factor in
brackets becomes d[t0 � t � (x � x0)/c] . The integration in Eq. 9 can
then be carried out immediately to give

p ¼ âbE0c

2CP
dðt � x=cÞ; (11)

which describes the right-going photoacoustic wave.
The contribution of the second source term on the right hand

side of Eq. 7 can be found by Laplace transformation. The Laplace
transform of the time variable in t given in Eq. 6 can be found in
mathematical tables [16]. The wave equation for the velocity

potential in Laplace space w is thus given by the Helmholtz
equation
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where k = s/c, and s is the Laplace variable. The velocity potentials
wR and wL, which denote potentials to the right and left of the
origin, are both governed by Eq. 12 and must obey the acoustic
boundary conditions
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To simplify solution of the wave equation further, it is
convenient to introduce two potentials F̃

R
and F̃

L
defined through

@2F/@x2 = w, which, on substituion into Eq. 12, gives the
Helmholtz equation for both potentials as

ðr2 � k2ÞF̃ ¼ âbxE0
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Solutions for the two potentials are found to be
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where CR and CL are constants. The boundary conditions for F can
be found from Eqs. 13 as
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Since only the terms in Eqs. 15 containing exponential factors of
the form exp(� sx/c) result in travelling waves when transformed
back to the time domain, the other terms in Eq. 15 are not carried
forward, as they correspond to thermal mode [1] waves that do not
propagate. After applying the boundary conditions to determine the
constants in Eqs. 15, the velocity potential for the right-going acoustic
wave is found to be
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The time domain velocity potential is found using the following
two inverse Laplace transforms [16] calculated with x > 0,
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The pole in complex integration [17] used to determine the
inverse Laplace transform of the last term in Eq. 17 lies in the right
hand complex plane; hence the value of the integral is taken to be
zero. The velocity potential wR is thus found to be
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