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a b s t r a c t

Motivated by the performance of the direction finding algorithms based on the auxiliary

vector filtering (AVF) method and the conjugate gradient (CG) method as well as the

advantages of operating in beamspace (BS), we develop two novel direction finding

algorithms for uniform linear arrays (ULAs) in the beamspace domain, which we refer to

as the BS AVF and the BS CG methods. The recently proposed Krylov subspace-based CG

and AVF algorithms for the direction of arrival (DOA) estimation utilize a non-

eigenvector basis to generate the signal subspace and yield a superior resolution

performance for closely spaced sources under severe conditions. However, their

computational complexity is similar to the eigenvector-based methods. In order to

save computational resources, we perform a dimension reduction through the linear

transformation into the beamspace domain, which additionally leads to significant

improvements in terms of the resolution capability and the estimation accuracy. A

comprehensive complexity analysis and simulation results demonstrate the excellent

performance of the proposed algorithms and show their computational requirements.

As examples, we investigate the efficacy of the developed methods for the discrete

Fourier transform (DFT) and the discrete prolate spheroidal sequences (DPSS) beam-

space designs.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The need for the direction of arrival (DOA) estimation
of incident signal wavefronts using sensor arrays is
encountered in a broad range of important applications,

including radar, wireless communications, biomedicine,
etc. As a result, numerous methods for estimating the
DOAs of signals have been proposed in the last few
decades [1]. Among the most powerful techniques are
the subspace-based algorithms, such as MUSIC [2], Root-
MUSIC [3] and ESPRIT [4], which are proven to yield
high-resolution capabilities. However, they require an
eigendecomposition of the M�M spatial covariance
matrix R¼ EfxxHg of the received data, corresponding
to M sensor elements. As this is a computationally
expensive operation with OðM3

þM2NÞ multiplications, a
new class of subspace-based DOA estimation methods
termed Krylov subspace-based methods [5,6], adopting
the auxiliary vector filtering (AVF) algorithm [7] or, as
an extension, the conjugate gradient (CG) algorithm [8],
was recently proposed. Note that another class of DOA
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estimators that do not resort to an eigendecomposition
but still demand a high computational cost comprises the
maximum-likelihood (ML) methods [1,9,10]. Here, how-
ever, we only focus on the subspace-based algorithms.

The advantage of the Krylov-based techniques is that
they are applicable to arbitrary array geometries and
avoid the eigendecomposition by iteratively generating
an extended Krylov signal subspace that consists of the
true signal subspace and the scanning vector itself. While
the AVF algorithm forms the signal subspace from aux-
iliary vectors, the CG method applies residual vectors to
span the Krylov subspace. Then, the unknown DOAs are
determined by the search for the rank collapse of the
extended signal subspace in the entire spatial spectrum,
which occurs when the scanning vector is contained in it.
This results in superior resolution performance for closely
spaced sources under severe conditions, i.e., in the case of
a low signal-to-noise ratio (SNR) and a small data record.
However, despite utilizing a non-eigenvector basis they
suffer from a similar computational complexity as the
eigenvector-based methods, since the Krylov signal sub-
space is constructed for each search angle.

One way of significantly reducing the computational
complexity is beamspace (BS) processing [11], which
transforms the original data in element space into a
reduced-dimensional subspace and performs the DOA
estimation only in a spatial sector rather than in the
entire angle range. Apart from the great computational
savings, operation in beamspace also increases the reso-
lution abilities as well as the estimation accuracy [12].
This is achieved by the enhancement of the SNR within
the spatial sector of interest in analogy to beamforming.
However, it is well known that beamspace processing
does not improve the best achievable estimation accuracy
as it only preserves the signals in the sector of interest,
i.e., the corresponding Cramér–Rao lower bound (CRLB) in
beamspace is equal to the element-space CRLB if there are
only in-sector sources [13,14]. Beamspace techniques
with robustness against strong sources that are located
outside of the spatial sector were developed in [15,16].

In this paper, we propose two beamspace direction
finding algorithms based on the CG and the AVF algo-
rithms. Note that although these two Krylov-based algo-
rithms are applicable to arbitrary array geometries we
focus on uniform linear arrays (ULA) in this work to
simplify the operation in beamspace. A generalization to
other geometries can be achieved by considering array
linearization techniques [17] prior to the proposed beam-
space algorithms. Also, our methods are designed for the
one-dimensional DOA estimation but extensions to the
two-dimensional case are possible. For convenience, we
assume that the number of signal sources d is known and
that they are well inside the subband of interest. As the
search for the signals is only conducted in a spatial sector,
either a priori information of the approximate position of
the DOAs is required or parallel processing of overlapping
sectors of the angle spectrum has to be applied. We show
that the proposed algorithms require a substantially lower
computational complexity compared to their counterparts
in element space. Moreover, they provide a better resolution
and better estimation capabilities compared to previously

developed beamspace algorithms, such as BS MUSIC [12], BS
Root-MUSIC [18], and BS ESPRIT [19]. In addition, two
different designs of the beamspace transformation matrix
using the discrete Fourier transform (DFT) and discrete
prolate spheroidal sequences (DPSS) are evaluated and
compared.

The remainder of this paper is organized as follows.
Section 2 describes the system model. The two different
ways of designing the beamspace matrix are introduced
and compared in Section 3. In Section 4, the proposed BS
CG and BS AVF algorithms are presented, whereas Section
5 deals with the complexity analysis. Section 6 illustrates
and discusses the simulation results and finally, the
concluding remarks are drawn in Section 7.

Notation: We use lowercase boldface letters for column
vectors and uppercase boldface letters for matrices.
The superscripts T,n and H denote transpose, complex
conjugate, and conjugate transpose, respectively, JxJ
represents the 2-norm of the vector x and E �f g stands for
the statistical expectation.

2. System model and beamspace processing

Let an M-element ULA receive narrowband signals
originating from d ðdoMÞ far-field sources with the DOAs
h¼ ½y1, . . . ,yd�

T . The ith of N available data snapshots of
the M � 1 array output vector can be modeled as

xðiÞ ¼ AðhÞsðiÞþnðiÞ, i¼ 1, . . . ,N, ð1Þ

where AðhÞ ¼ ½aðy1Þ, . . . ,aðydÞ� 2 C
M�d is the array steering

matrix, sðiÞ ¼ ½s1ðiÞ, . . . ,sdðiÞ�
T 2 Cd�1 represents the zero-

mean vector of signal waveforms, and nðiÞ 2 CM�1 is the
vector of white circularly symmetric complex Gaussian
sensor noise with zero mean and variance s2

n. The M�1
steering vector aðylÞ corresponding to the lth source, l¼1,
y, d, is expressed as

aðylÞ ¼ 1 ej2pðD=lc Þsin yl � � � ej2pðM�1ÞðD=lc Þsin yl

h iT
, ð2Þ

where D denotes the interelement spacing of the ULA, lc

is the signal wavelength, and omni-directional sensors
have been assumed for the sake of notational simplicity.
Using the fact that sðiÞ and nðiÞ are modeled as uncorre-
lated random variables, the M�M covariance matrix is
calculated by

R¼ EfxðiÞxHðiÞg ¼ AðhÞRssA
H
ðhÞþs2

nIM , ð3Þ

where Rss ¼ EfsðiÞsHðiÞg and IM is the M�M identity
matrix. In practice, the unknown covariance matrix is
estimated by the sample covariance matrix

R̂ ¼
1

N

XN

i ¼ 1

xðiÞxHðiÞ: ð4Þ

The linear transformation of the original data into the
beamspace of a lower dimension B with doBoM is
defined as

~xðiÞ ¼WHxðiÞ 2 CB�1, ð5Þ

where W is the M�B beamspace matrix satisfying
WHW ¼ IB, so that the beamspace sensor noise remains
spatially white. If the beamspace matrix Wo is not
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