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a b s t r a c t

Parameter estimation for exponentially damped complex sinusoids in the presence of

white noise using multiple channel measurements is addressed. More precisely, we are

interested in the damping factor and frequency parameters which are common among

all channels. By exploiting linear prediction and weighted least squares technique, an

iterative algorithm is devised to extract the common dynamics of the cisoids. Statistical

analysis of the proposed method is studied and confirmed by computer simulations.

Moreover, it is shown that the developed estimator attains optimum estimation

accuracy and is superior to a conventional subspace-based algorithm when the

signal-to-noise ratio is sufficiently high.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Parameter estimation for sinusoidal signals embedded
in additive noise is an important research topic because of
its wide applications in science and engineering [1–4].
The parameters of interest are the damping factors,
frequencies, amplitudes and phases. Apart from conven-
tional estimation from only one data set [5–9], the
problem of finding the sinusoidal parameters from multi-
ple channels has also received considerable attention
[10–12]. A representative application is to extract the
common epileptiform activity [10,11] from the artifacts
and background activity using multiple electroencephalo-
graphy (EEG) recordings. While in nuclear magnetic
resonance (NMR) spectroscopy [12], quantification of the
complex time-domain signals is useful for brain tumor
detection and material health monitoring.

In this paper, we address multi-channel sinusoidal para-
meter estimation of [10,11] where each channel output
is modeled as a sum of exponentially damped complex

sinusoids in white noise. Among all channels, there are some
cisoids whose damping factors and frequencies are common,
which correspond to the common dynamics. Note that the
corresponding amplitudes and phases can be easily deter-
mined channel by channel according to a linear least squares
fit once the damping factor and frequency parameters are
estimated. This problem is more challenging than that of
[12] where all poles are common among the channels. With
the use of shift-invariance of the signal subspace and total
least squares technique, a subspace-based algorithm for
estimating the common dynamics using multiple channels
is developed in [13]. In [14], a solution based on the
orthogonality of the signal and noise subspaces, which
belongs to the family of the orthogonal vector method, is
devised. Though computationally attractive, these algo-
rithms cannot give optimum estimation performance. In this
work, our main contribution is to devise an estimator for the
common sinusoidal parameters with variance attaining the
Cramér–Rao lower bound (CRLB) under sufficiently small
noise conditions.

The rest of the paper is organized as follows. The
problem of estimating the common damping factors
and frequencies from multiple channel measurements is
formulated in Section 2. Based on linear prediction (LP)
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and weighted least squares (WLS) technique, the algo-
rithm is devised in Section 3. The mean and variance of
the proposed estimator are derived in Section 4. Simula-
tion results are included in Section 5 to corroborate the
analytical development and to evaluate the performance
of the proposed approach by comparing with [13] as well
as CRLB. Finally, conclusions are drawn in Section 6.

1.1. Symbols and notations

Throughout this paper, we use boldfaced uppercase
letters to denote matrices, boldfaced lowercase letters for
column vectors, and lowercase letters for scalar quanti-
ties. Superscripts ð�Þn, ð�ÞT , ð�ÞH , ð�Þ�1 and ð�Þy represent
complex conjugate, transpose, Hermitian transpose,
matrix inverse, and pseudo-inverse, respectively. The
notation A 2 CM�N means that A is a complex M�N

matrix. Moreover, RðaÞ and +ðaÞ denote the real part
and phase angle of a. The block diagonal matrix, with
A1 and A2 being its components, is denoted by diag
ðA1,A2Þ, and vec(A) is the columnwise vectorized version
of matrix A. The Kronecker product is denoted by �, IM is
the identity matrix of dimension M and 0M�N is the M�N

zero matrix. Moreover, nM,i denotes the ith column of IM .
The HM,u and HM,‘ denote matrices containing the first
and last ðM�1Þ rows of IM , respectively. The Hankel
matrix with first column a and last row bT is denoted
by Hankel ða,bT

Þ. Similarly, Toep ða,bT
Þ represents the

corresponding Toeplitz matrix. In addition, di,j is the Dirac
delta function and CN ðx;l,RÞ is the complex Gaussian
probability density function with mean l and covariance
R. Furthermore, var ðaÞ and cov ðaÞ represent the variance
of a and covariance of a, respectively. In addition, E isthe
expectation operator. In the following, we estimate a by
minimizing a cost function. In this situation, a is a variable
instead of a fixed-value constant. Therefore, we denote �a
by the variable to avoid confusion. Finally, â represents
the estimate of a.

2. Problem formulation

The observed signal of the kth channel at time n is
modeled as

xk,n ¼ sk,nþqk,n, k¼ 1, . . . ,K , n¼ 1, . . . ,N, ð1Þ

where

sk,n ¼
XMk

m ¼ 1

ak,mb
n
k,m, bk,m ¼ rk,m expfjok,mg: ð2Þ

Here, K, N and Mk are the number of channels, data length
and number of damped exponentials in the kth channel,
respectively. The damping factor, frequency and complex
amplitude of the mth sinusoid in the kth channel are
denoted by rk,mo1, ok,m 2 ð0,2pÞ and ak,m, respectively.
Without loss of generality, let o1,m ¼ � � � ¼oK ,m ¼om and
r1,m ¼ � � � ¼ rK ,m ¼ rm, m¼ 1, . . . ,M be the common
dynamics while M1r � � �rMK and MoM1. It is assumed
that M and fMkg are known a priori. Furthermore, the
noise qk,n is independent and identically distributed com-
plex Gaussian random process with mean zero and variance

s2. Note that if the signals arrive at different times in
different channels, we first need to determine, in each
channel, the time index after which the signal is present,
referred to as signal start time. Technically, a hypothesis test
is carried out to detect the incoming data whether it
consists of signal plus noise or noise only with certain
confidence level. We then only utilize the data after the
signal start time and discard the previous data. In this paper,
we assume that the detection has been performed and focus
on estimating the common dynamics, that, is, om and rm,
m¼ 1, . . . ,M from xk,n, k¼ 1, . . . ,K , n¼ 1, . . . ,N.

3. Algorithm development

In this section, we develop a three-step iterative
algorithm to estimate the common dynamics through
solving LP coefficients of all channels using weighted
least squares techniques. It is well known that the com-
plex sinusoid sk,m can be uniquely expressed as a linear
combination of its previous Mk samples [15]:

XMk

m ¼ 0

ak,msk,n�m ¼ 0, ak,0 ¼ 1, k¼ 1, . . . ,K , ð3Þ

where ak,m, m¼ 1, . . . ,Mk are the LP coefficients for the kth
channel, which are directly related to bk,m, m¼ 1, . . . ,Mk.
That is, z¼ bk,m satisfies the following polynomial:

XMk

m ¼ 0

ak,mzMk�m ¼ 0, k¼ 1, . . . ,K : ð4Þ

It indicates that once ak,m is obtained, bk,m can be
estimated by solving the polynomial equation of (4).
In particular, the common dynamics, bm, m¼ 1, . . . ,M,
are the common roots of the K equations in (4). Writing
this relationship in matrix form yields

DT C¼ 0M�K ð5Þ

where

C¼

0ðMK�M1Þ�1 0ðMK�M2Þ�1 � � � 1

1 1 &

a1 a2 � � � aK

2
64

3
75,

D¼

bMK

1 bMK

2 � � � bMK

M

bMK�1
1 bMK�1

2 � � � bMK�1
M

^ ^ & ^

1 1 � � � 1

2
66664

3
77775

,

ak ¼ ½ak,1 � � � ak,Mk
�T :

Here, we append zeros in C because the numbers of tones
in each channel are generally different. It is noticed that
fbmg can be obtained from D via the relationship of

D‘P¼Du, ð6Þ

where D‘ and Du are matrices containing the lower and
upper MK rows of D, respectively, and P¼ diagðb1, . . . ,bMÞ.
In practice, we substitute the observed xk,n for the
unavailable sk,n into (3) and replace the equal sign by
the approximately equal sign. Denote the left-hand side of
(3) by LP error. Then, the overall LP error for all the K
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