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a b s t r a c t

This investigation has employed artificial neural network (ANN) modeling to describe the complex rela-
tionship between the forced cycling parameters and the reactor performance during periodic operation
between propane steam reforming and CO2—carbon gasifying agent. Experimental data from our labo-
ratory were assessed against different ANNs and based on a 2-way ANOVA treatment of various error
indices, a two-hidden layer network with 5 neurons emerged as the best model for both descriptive and
predictive purposes. Cycle split has the most significant (85%) positive effect on the improvement in H2

and CO production and the appearance of resonant peaks while cycle period appeared to have detrimental
effect on product yield.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Hydrocarbon steam reforming over Ni-based catalyst for H2 or
syngas production is industrially carried out using excess steam
to avoid unwanted coke deposition [1]. The latter ultimately leads
to poor reactor performance due to catalyst deactivation. In order
to minimize energy costs (associated with steam generation) and
improve reactor operation, CO2 may be used as a carbon gasifier
[2]. This has the added advantage of reducing overall greenhouse
gas (GHG) emissions from the reforming plant. In a recent study [3],
we demonstrated that periodic composition cycling as illustrated
in Fig. 1, between the CO2 gasifying agent (C1) and propane steam
reforming feed (C2) has significant benefits in terms of increased
syngas yield, tailored H2:CO ratio suitable for downstream con-
version in a gas-to-liquid (GTL) fuels plant and superior catalyst
stability and longevity.

The time-average rate behaviour with respect to cycle frequency
was characterized by resonant peaks depending on the cycle split
(symmetry) employed. Modeling of periodically operated reactors
is a multifarious exercise strongly reliant on the choice of reaction
mechanism. Mihail and Paul proposed adsorption/desorption mod-
els [4] which Jain et al. [5,6] latter rejected as inadequate to explain
the resonance effects seen in their experimental studies for SO2 oxi-
dation. Other attempts at providing mechanistically based models
to describe the complex phenomena observed during forced cycling
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of catalytic reactors have also been met with mixed success. Indeed,
Silveston et al. [7] have indicated that adsorption/desorption type
models cannot accurately capture the nonlinear behaviour often
implicated in periodically operated catalytic processes. However,
optimal control of the forced cycling reactor requires a reliable
model of its performance in order to harness the benefits (improved
product yield and selectivity) associated with this dynamic opera-
tion. In this work, we have taken an artificial neural network (ANN)
approach which does not require detailed understanding of the
reaction mechanism. In particular, ANN permits the utilization of
fewer latent variables which contain inherent information about
the process. Indeed, ANN models are significantly more potent
in capturing the process attributes with higher predictability and
better description than multivariate data analysis as espoused by
Bulsari [8].

Although a detailed mechanistic basis for this nonlinear
behaviour is presently unavailable, a parsimonious model for pro-
cess optimization may be secured via ANN analysis of existing data.
ANN is a mathematical analogue of how the human brain recog-
nizes and reproduces cause-effect relational patterns upon training
(multiple-input–multiple-output systems). The ANN modeling of
complex nonlinear behaviour or pattern in chemical engineer-
ing systems has been reported [8–13]. Even though nonlinear
estimators like Holographic Research Strategy (HRS) and Genetic
Algorithm (GA) are available, Tompos et al. [14] reported the
robustness of these methods only after securing the relationship
between the composition–activity of the catalysts via ANNs in their
study. Moreover, they found that the predictive ability of the ANNs
assisted in the enhancement of both HRS and GA methods to iden-
tify the optimized catalyst composition. The aim of the present
work is to procure an ANN model to describe and predict the non-
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Fig. 1. Operating variables during forced cycling of a reactor.

linear dependency of key reaction metrics on cycle parameters
(frequency and split) during periodic composition cycling between
propane steam reforming feed and CO2, a carbon gasifier without
recourse to formal mechanistic details. In particular, since ANN is
a mathematical imitation of the biological neural data processing
operation, optimization of the network architecture used in this
study was patterned after the Fibonacci search strategy which has
meaningfully captured the behaviour in many natural ecosystems
[15–17]. Moreover, the integer nature of optimum number of neu-
rons in an ANN lends itself better to a Fibonacci-type algorithm
rather than a continuous function-dependent method.

2. Theoretical basis and numerical procedure

2.1. Data scaling

The input variables were taken as the cycle period and split
(fraction of the period spent under CO2 feed for carbon gasifica-
tion). In view of the difference in units, magnitude and range of the
input variables, each variable needs to be rescaled so that values
fall within the interval [0.01, 0.99]. The transformation was carried
out using:

x̂ = x − m

M − m
(1a)

where x̂ is the rescaled variable, with M and m chosen such that:

xmin − m

M − m
= 0.01 and

xmax − m

M − m
= 0.99 (1b)

where xmin and xmax are the minimum and maximum values of the
original variable, x respectively. The variables in the output vector,
H2, CH4 and CO were also similarly rescaled.

2.2. Methodology to select optimum neurons and architecture

The performance of an ANN is strongly dependent on the
number of neurons employed and the network architecture. For
instance, a simple feed-forward network with supervised learn-
ing algorithms such as back-propagation algorithm is competent in
learning the relationship between the given inputs and targets for a
nonlinear process data set [8–13]. Thus, a systematic procedure to
optimize the number of neurons for building the multilayer feed-
forward neural network to map the input–target relationship of the
given data set is critical to the overall modeling exercise. The num-
ber of weights required to capture a reliable relationship between
a given input and output is directly proportional to the number
of neurons. ANN being a mimicry of the biological nervous system
would be more appropriately optimized if the number of neurons
were chosen in a manner that is patterned after natural evolu-
tionary systems. Interestingly many naturally occurring networks

(e.g. in forestry, microbiology and river systems—delta formation)
containing optimum nodal points are known to be described by
the Fibonacci sequence [15–17]. Consequently, it seems logical to
derive the number of neurons in our ANN simulation of the opti-
mal catalyst design using members of the Fibonacci series [18]. To
the best of our knowledge, this is the first appropriation of the
Fibonacci search strategy in ANN simulation of either chemically
reactive systems or artificially contrived proceesses. The numerical
procedure was carried out in MATLAB Neural Network ToolboxTM

version 7.8.0.347 (R2009a) and may be summarized as:
Step 1: The MATLAB Neural Network Toolbox random data divi-

sion function was used to partition the 34 data cases into 24, 5 and
5 for training, validation and testing of the networks respectively.
A three-layer architecture (input, hidden and output layers) was
considered with different artificial neural networks (ANNs) aris-
ing from variation in the number of neurons in the hidden layer.
A tangent sigmoid transfer function was used for the neurons in
the hidden layer. The number of neurons in the hidden layer for
each ANN was chosen as terms of the Fibonacci series to introduce
optimality in both the number of ANNs and computational effort.
The total number of neurons required to obtain excellent model
adequacy of an empirically fitted approximation and the ratio of
number of neurons in the hidden layer to the number of data cases
has to satisfy two opposing criteria detailed in Haykin [19] and
Barron [20], namely:

(a) Accuracy of best approximation—the size of the hidden layer, Nhl,
must be as large as possible in accordance with the universal
approximation theorem and

(b) Accuracy of the empirical fit to the approximation—the ratio of
the hidden layer size to number of training data cases, Nt, i.e.
Nhl/Nt must be small.

In order to accommodate both criteria, we adopted the rule of
thumb, 1 ≤ Nhl/Nt ≤ 10 [9]. Given that Nt is 24 for this study, ANNs
with 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 neurons in the hidden
layer were chosen (total of 11 ANNs since the 2nd and 3rd ANNs
with 1 neuron each, are mere repetitions while the 1st ANN with 0
neurons is physically inadmissible).

Levenberg–Marquardt algorithm was used to train each net-
work based on the randomly selected 24 data cases. The random
data division function was called 1000 times (cycles) to pick differ-
ent combinations of the training, validation and testing data sets
from the total data pool in each cycle. Thus, each of the 11 ANNs
was trained 1000 times with different data set combinations result-
ing in a total of 11,000 trained, validated and tested ANNs. In this
study after each cycle, i.e. for every ANN trained, after the entire
training procedure was completed (R-square value ≥ 0.92 in nearly
all cases), the weights and biases were used to simulate the net-
work using all inputs (34 data cases) from the data set while the
resulting output from the network after simulation and the targets
from the data set were used to calculate the performance of the
networks which was evaluated by different error indices, namely:

Sum-of-squared error (SSE) =
N∑

s=1

(yo
s − ts)

2 (2)

Mean squared error (MSE) = 1
N

N∑
s=1

(yo
s − ts)

2 (3)

Root-mean-squared error (RMSE) =

√√√√ 1
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