ORIGINAL ARTICLE

Does Low-Field Intraoperative Magnetic Resonance Improve the Results of Endoscopic Pituitary Surgery? Experience of the Implementation of a New Device in a Referral Center

Sergio García¹, Luis Reyes¹, Pedro Roldán¹, Jorge Torales¹, Irene Halperin², Felicia Hanzu², Cristobal Langdon³, Isam Alobid³, Joaquim Enseñat¹

- OBJECTIVE: To assess the contribution of low-field intraoperative magnetic resonance (iMRI) to endoscopic pituitary surgery.
- METHODS: We analyzed a prospective series of patients undergoing endoscopic endonasal surgery for pituitary macroadenomas assisted with a low-field iMRI (Pole-StarN30, 0.15 T [Medtronic]). Clinical, radiologic, and surgical variables were analyzed and compared with our fully endoscopic historic cohort operated on without iMRI assistance. A bibliographic review of pituitary surgery assisted with iMRI was conducted.
- RESULTS: Thirty patients (57% female; mean age, 55 years) were prospectively analyzed. The most frequent tumor subtype was nonfunctioning macroadenoma (50%). The average Knosp grade was 2.3 and mean tumor size was 18 mm. Surgical and positioning time were 102 and 47 minutes, respectively. Hospital stay and complication rates were similar to our historical cohort for pituitary surgery. Mean follow-up was 10 months. Complete resection (CR) was achieved in 83% of patients. Seven patients (23%) benefited from iMRI assistance and achieved a CR in their surgeries. All patients except 1 experienced hormonal activity remission. iMRI sensitivity and specificity was 0.8 and 1, respectively. Although not statistically significant,

CR rates were globally 11.5% superior in iMRI series compared with our historical cohort. This difference was independent of cavernous sinus invasiveness grade (CR rate increased 12.5% for Knosp grade 0—2 and 8.1% for Knosp grade 3—4).

■ CONCLUSIONS: Low-field iMRI is a useful and safe assistance even in advanced surgical techniques such as endoscopy. Its contribution is limited by the intrinsic features of the tumor. Further randomized studies are required to confirm the cost-effectiveness of iMRI in pituitary surgery.

INTRODUCTION

s in other fields of neuro-oncology, the goal of pituitary surgery is to achieve the maximum extent of resection (EoR) and maintain low morbidity and mortality. In functioning pituitary tumors, hormonal response allows an early confirmation of complete resection (CR). However, in nonfunctioning adenomas, this goal is not so critical and, given their nature, the existence of remnants at an early stage might be difficult to assess.

Key words

- Endoscopic
- Extent of resection
- Intraoperative magnetic resonance
- Low field
- Macroadenoma
- Pituitary

Abbreviations and Acronyms

ACTH: Adrenocorticotropic hormone

CR: Complete resection

CS: Cavernous sinus

EoR: Extent of resection

GH: Growth hormone

iMRI: Intraoperative magnetic resonance imaging

MRI: Magnetic resonance imaging

PR: Partial resection

- PT: Placement time
- S: Sensitivity
- Sp: Specificity
- SR: Subtotal Resection
- ST: Surgical time

From the Departments of ¹Neurosurgery, ²Endocrinology, and ³Rhinology, Hospital Clínic de Barcelona, Barcelona, Spain

To whom correspondence should be addressed: Sergio García, M.D.

[E-mail: iskender_brave@hotmail.com]

Citation: World Neurosurg. (2017) 102:102-110.

http://dx.doi.org/10.1016/j.wneu.2017.02.094

Journal homepage: www.WORLDNEUROSURGERY.org

Available online: www.sciencedirect.com

1878-8750/\$ - see front matter © 2017 Elsevier Inc. All rights reserved.

Age (years)	Sex	Initial Diagnosis	Hormone	Diameter (mm)	Knosp Grade	Reoperation	First Look	Further Resection	Extent of Resection*	Length of Stay (days)
69	F	NFA		20	2		CR	No	CR	3
76	F	NFA		24	4		CR	No	CR	3
74	F	NFA		30	4	Yes	PR	Yes	PR	3
80	F	Acromegaly	GH	15	0		CR	No	CR	3
49	F	Cushing	ACTH	12	1		CR	No	CR	2
48	М	NFA		37	4	Yes	PR	Yes	PR	6
43	М	Acromegaly	GH	29	2		CR	No	CR	3
47	М	Acromegaly	GH	18	2		CR	No	SR	3
68	М	Pituitary apoplexy	IGF	25	2		PR	Yes	CR	6
72	М	NFA		15	3		CR	No	CR	3
58	F	NFA		40	2		CR	No	CR	2
55	М	Cushing	ACTH	21	4		PR	Yes	CR	4
57	M	NFA		16	4	Yes	CR	No	CR	2
60	М	Acromegaly	GH	10	4		PR	Yes	PR	4
65	М	Acromegaly	GH	11	0		CR	No	CR	3
49	M	NFA		32	1		PR	Yes	CR	3
67	M	NFA		18	4		PR	Yes	PR	3
45	F	Cushing	ACTH	14	1		CR	No	CR	3
48	F	Acromegaly	GH	13	1		CR	No	CR	3
58	F	NFA		11	3		CR	No	CR	3
65	F	Acromegaly	GH	13	0		CR	No	CR	3
42	F	Amenorrhea	PRL	15	1		CR	No	CR	3
50	М	NFA		25	4	Yes	PR	Yes	CR	3
74	F	NFA		19	2		PR	Yes	CR	3
75	F	NFA		16	2		CR	No	CR	3
64	F	NFA		18	3		PR	Yes	CR	3
67	F	NFA		18	2		PR	Yes	CR	3
43	М	Pituitary apoplexy		20	2		CR	No	CR	3
47	F	Acromegaly	GH	12	2		CR	No	CR	3
59	F	Cushing	ACTH	27	2		CR	No	CR	3
Total										
54.6				A = 18.3	A = 2.3	4	19 CR	11 FR	25 CR	A = 3.2

F, female; NFA, nonfunctioning adenoma; CR, complete resection; PR, partial resection; GH, growth hormone; ACTH, adrenocorticotropic hormone; M, male; IGF, insulinlike growth factor; PrI, prolactin; A, Average; FR, further resection.

*Based on 3-month magnetic resonance imaging.

Recently, many groups specialized in skull base surgery have evolved from traditional microsurgery to a neuroendoscopic approach in the treatment of sellar region tumors. Although endoscopy has proved to be an excellent tool for the removal of pituitary tumors with extrasellar extension, ¹⁻⁴ its resective capacity is occasionally limited by morphologic or anatomic constraints.

Neuronavigation improves intraoperative orientation, ensuring the identification of vascular and nervous structures, especially in reoperations, and contributes to locating intrasellar microadenomas.⁵ Intraoperative imaging emerged as an attempt to alleviate the problems related to the loss of precision of neuronavigation systems during a surgical procedure. The

Download English Version:

https://daneshyari.com/en/article/5634597

Download Persian Version:

https://daneshyari.com/article/5634597

<u>Daneshyari.com</u>