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a b s t r a c t

In order to model the drift of fiber optic gyroscope (FOG) efficiently, a novel multi-scale prediction
method is proposed by utilizing signal decomposition. Analytical expression of thermally induced drift of
FOG is given first, which forms our theoretical basis of multi-scale prediction. Newly proposed bounded
EEMD is used to decompose drift signal into a series of stationary modes, and then an adaptive feature
selection criterion is proposed to construct distinct sub-series. Extreme learning machine is used to train
these sub-series respectively, and a hybrid model is then obtained by adding up all the sub-models.
Experiments have shown that, compared with the state-of-the-art methods, the proposed method im-
proves prediction accuracy by two orders and achieves much faster speed in training process.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Fiber optic gyroscope (FOG) is widely used in strap-down in-
ertial navigation system (SINS), but the noise and drift contained
in FOG can degrade the accuracy of SINS greatly over time without
employing compensation methods. FOG senses the angular in-
formation based on the Sagnac effect which is caused by two
beams of light that counter-propagate in a fiber optic [1]. Due to
vibration and environment factors, such as temperature or diffu-
sion of moisture, there are unbalanced stress and inhomogeneous
thermal distribution existing in fiber-optic coil, which generates
nonreciprocal phase shifts that have different properties [2]. In
order to suppress these unwanted phase shifts, many methods
have been proposed based on internal improvement of FOG
structure, such as advanced winding method [3], accurate tem-
perature control or adding accessories to isolate the disturbance.
However, these hardware-based methods suppress drift at the cost
of extra cost and bigger size. Due to non-ideal symmetric structure
or temperature control error there is still residual error which is
nonnegligible in navigation application. Besides, it is not always
available for general users to access the internal structure of FOG.
Mathematic-based methods provide more flexibility and are often
easy to carry on, so compensation methods which are based on
software and experiment data become an important com-
plementary step of internal structure improvement.

Noise contained in FOG output possesses weak non-stationary
and time-variant property, and the random noise would degrade
modeling accuracy greatly without a pre-process of original drift.
It is hard to predefine the model transformation of FOG precisely,
which makes methods requiring entirety known system transfor-
mation less attractive. It has been reported that when the statistic
property of noisy signal is unknown, wavelet-based denoising
methods perform better than the other filtering methods [4].
However, it is tedious to select suitable decomposition parameters,
and once the parameters are selected they will never change for
the whole data series, which makes wavelet-based methods non-
adaptive. Instead of wavelet transformation, empirical mode de-
composition (EMD) is adopted here to decompose drift signal into
multiple stationary sub-series that called intrinsic mode functions
(IMFs) [5]. By combining the IMFs, a complicate signal can be di-
vided into stochastic and deterministic parts, which can be used to
improve the modeling and prediction process. However, in terms
of identifying different parts of signal, there is still no robust mode
selection criterion that is suitable for signal with different signal-
to-noise ratio (SNR). A comparison between wavelet-based and
EMD-based filtering methods has been made in previous study [6],
and comparison results indicate that the latter performs better
than the former, especially when SNR is small. Recently, EMD has
been successfully used in processing FOG signal [7,8]. However,
due to the inherent defect (e.g. mode mixing and end effect) much
more work needs to be done. By applying noise assisted data
analysis (NADA), an enhanced form of EMD named ensemble
empirical mode decomposition (EEMD) was proposed to solve the
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mode mixing problem occurred in EMD [9]. However, EEMD de-
stroys the data-driven property of EMD and produces spurious
modes. We proposed a simplified EEMD named BEEMDAN in our
previous work [10], where noise assisted decomposition was only
used in the early stages of EMD. An analogous algorithm was
proposed by employing NADA partly [11], where a threshold was
empirical predefined to stop the ensemble decomposition, which,
however, needs to be tested for more types of signal.

When FOG is used in harsh temperature environment, the
temperature gradient vibration would generate random noise and
drift. Furthermore, thermal conduct generated by the variant
temperature inside fiber coil will certainly heat the coil in return.
Generally, thermally induced drift can be mainly divided into two
categories: (a) Shupe error caused by the radial direction tem-
perature gradient variation of fiber coil (b) thermal stress-induced
bias drift that depends on the average temperature of the fiber
coil. Besides, it has also been reported that the temperature sen-
sitivity of light components and electron drift in the detection and
modulation circuit depend on temperature greatly. In a word, the
final thermally induced drift is a hybrid of multiple sub-series
characterized by different energies and frequencies, and the out-
put of FOG includes the information of temperature variation.
Most of current prediction methods assume that the thermally
induced drift can be approximated by single model, such as
polynomial model [12], neural network [13] and support vector
machine [14], which are time-consuming or often unable to ap-
proximate the relation between temperature variation and drift
signal.

A novel multi-scale prediction method is proposed to com-
pensate the drift of FOG when ambient temperature varies dra-
matically. It is founded on the intuition that modeling stochastic
and deterministic component of a signal respectively, would cer-
tainly reach a faster training speed and better prediction accuracy
than global modeling. Here, BEEMDAN is used to decompose the
drift signal to produce stationary IMFs, and then a robust mode
selection criterion is proposed by utilizing self-similarity of the
probability distribution function (PDF) of every IMFs. Finally, a
newly developed fast learning method named extreme learning
machine (ELM) [15] is applied to training each sub-series. The final
prediction result is obtained by adding up all the output of sub-
models trained by ELM, we named this method as multi-scale ELM
(MS-ELM).

The rest of this paper is arranged as follows. A brief review of
thermally induced FOG drift is given in Section 2. BEEMDAN al-
gorithm and feature selection criterion are provided in Section 3.
Multi-scale prediction method is presented in Section 4. And then,
experiment is performed to verify MS-ELM. Finally, conclusions
are drawn from the simulation results in Section 6.

2. Thermal induced errors

There are other nonreciprocal phase shifts that cannot be dis-
tinguished from rotation-induced phase shift in FOG output,
which need an extra compensation process. The thermally induced
drift mainly consists of two kinds of error, Shupe error due to
thermal transients and thermal stress-induced bias drift from the
fiber coating. Let the total length of waveguide be L, the phase shift
due to measured rotation rate Ω and thermal fluctuations are [3]
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where D, c and λ are loop diameter, velocity and wavelength of
light, respectively, β π λ= 2 / is the free space propagation constant,
n denotes refractive index and ∂ ∂ϑn/ is thermal-optic coefficient,
ϑ̇( )z t, is the temperature change rate at position z. The thermally
induced nonreciprocal rotation error can be obtained by equating
Eqs. (1) and (2),

∫Ω = ⋅ ∂
∂ϑ

⋅ ϑ̇( )( − ) ( )DL
n

n
z t L z dz

1
, 2 3E

L

1
0

Notice that, Shupe error has direct relation with thermal field
change rate, and because ϕ ϕΔ ( ) = − Δ ( − )z L zE E , advanced sym-
metrical winding method can compensate the Shupe error to a
great extent. However, due to unideal winding technology there is
still residual error that degrades the precision of navigation a lot.

Thermal stress of fiber coating will also generate nonreciprocal
phase shift, and the coefficient of thermal expansion must be very
small to reduce this bias drift. The analytical expression of thermal
stress induced error can be denoted as [16]
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where Ecore and μ denote Young's modulus and Poisson's ratio of
fiber core, Ecoating and αc are Young's modulus and thermal ex-
pansion coefficient of fiber coating. P11 and P12 denote photoelastic
coefficients. Comparing Eq. (3) and Eq. (4), we can conclude that
the inducements are different between Shupe error and bias drift,
and it is hard to distinguish them in dynamic thermal transients.
However, it is favorable to model them in different energy and
frequency scales, which is also the main contribution of this paper.

3. Adaptive feature selection

Although modeling random drift using experiment data is ef-
fective and convenient, in order to compensate the drift error ef-
fectively, it is crucial to extract the weak drift features from heavy
noisy FOG output. What's more, the phenomenon of Sagnac effect
is very weak, which makes the output of FOG always submerged in
noise, and degrades the short-term accuracy of SINS greatly. In a
word, it is necessary to develop an adaptive filtering method to
process FOG output and select useful features. In this section, we
depict BEEMDAN in detail first, and then a new mode selection
criterion is proposed.

3.1. Improved noise assisted decomposition

In the realization of EEMD, the assisted noise is added at the
beginning of a complete EMD decomposition, and the final en-
semble result is produced by averaging corresponding modes that
generated at every stage. As there are maybe different numbers of
modes generated in each trail, using a fixed denominator in
averaging operation will certainly destroy the data-driven prop-
erty of EMD. It has also been reported that the overlapping of
added noise in EEMD produces spurious modes, and averaging
mean envelope of each residue is better than averaging the noisy
mode candidate [17]. EEMD utilizes the dyadic filter property of
EMD of Gaussian noise to enhance the separation between dif-
ferent modes, but there is leakage of dyadic filter bank in the late
stages of Gaussian noise decomposition [9]. Furthermore, as the
added noise cannot be canceled in finite trails, the residual noise
from NADA would destroy the data-driven property of mode ex-
traction. In a word, using NADA partly not only retains the data-
driven property of late obtained IMFs but also reduces the residual
noise coming from NADA. What's more, it reduces the
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