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a b s t r a c t

We consider the problem of unsupervised classification of hidden Markov models (HMC) with dependent
noise. Time is discrete, the hidden process takes its values in a finite set of classes, while the observed
process is continuous. We adopt an extended HMC model in which the rich possibilities of different kinds
of dependence in the noise are modelled via copulas. A general model identification algorithm, in which
different noise margins and copulas corresponding to different classes are selected in given families and
estimated in an automated way, from the sole observed process, is proposed. The interest of the whole
procedure is shown via experiments on simulated data and on a real SAR image.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The paper deals with the problem of unsupervised estimation
of a hidden discrete process = ( … )X X X, ,N

N1 1 from an observed
continuous one = ( … )Y Y Y, ,N

N1 1 . Hidden Markov models (HMMs)
are very widely used to deal with the problem. Indeed, they allow
recursive computations of different quantities used in optimal
Bayesian processing in linear time. There are many papers fol-
lowing the pioneering ones [1,2], dealing with various application
areas. Let us mention some recent general papers or books about
general setting [3–5], signal and image processing [3], economy
and finance [6,7], or biology [8,9]. Besides, copulas [10,11] are also
of interest in numerous situations, due to their ability of modelling
dependent non-Gaussian data [12–15]. Their use goes increasing in
different areas. Mainly applied in economy and finance [16–21],
they are becoming increasingly used in other fields, such as in
signal or image processing [22–25] or in ecology [26–28].

However, despite their great benefit when used separately,
there is very little research and applications that combines them.
First papers on the subject date from about ten years: copulas use
has been introduced at temporal level in hidden Markov chains
with dependent noise (HMC-DN) in [29], at vectorial level in
hidden Markov chains in [30], and in hidden Markov trees in [31].
Some applications using vectorial-level copulas have been

proposed in the context of hidden Markov chains [32], hidden
Markov trees [33], hidden Markov fields [34,35], or general
Bayesian networks [36]. They were showed to be especially useful
in multi-sensor image processing where sensors are dependent
and not Gaussian [34,35]. Temporal-level copulas remain, for their
part, very little used. This is certainly due to the fact that the ob-
servations in HMMs are usually assumed to be independent con-
ditionally on the hidden data, and thus there is no dependency to
model. However, taking into account the noise dependence is of
interest, and using the right copulas can have strong influence on
the efficiency of Bayesian processing methods in HMMs with
correlated noise [37].

Our paper deals with the problem of unsupervised classifica-
tion of hidden Markov chains with copulas used at temporal level.
The novelty of the work is to propose a general method allowing
one to search the best copulas in a finite set of admissible copulas,
as well as the best margins in a finite set of admissible margins. In
addition, the admissible sets of copulas and margins can vary with
the hidden discrete data. This allows one to select, from the only
observed data, the best model in a quite rich set of possible
models. Therefore we simultaneously extend, first, the method
presented in [37] where the copulas where searched while the
forms of margins were assumed known and, second, the method
presented in [38,39] where the margins were searched while as-
suming independence.

Let us notice that the presented results can be almost directly
applied to more complex models than the HMC-DNs considered.
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Indeed, when parameter estimation is concerned, dealing with
“pairwise Markov models” (PMMs) [40,41] or even “triplet Markov
models” (TMMs), which includes non stationary PMMs [42], hid-
den semi-Markov models [43], or still hidden bivariate Markov
models [44], is a quite similar problem [42,43].

The organization of the paper is the following. In next Section
we recall the basics about HMM and how a dependent noise can
be modelled using a copula representation. The general model
identification method we propose is then specified in Section
three. Section four is devoted to recall the classic computations in
HMM-DN for different quantities of interest. Fifth section contains
some systematic experiments and the segmentation result of a real
SAR image. The last Section draws conclusions and proposes a few
perspectives.

2. HMM with dependent noise and copulas

Let us consider two random sequences = ( … )X X X, ,N
N1 1 and

= ( … )Y Y Y, ,N
N1 1 , taking their values in Ω = { … }K1, , and  re-

spectively. XN
1 is hidden, while YN

1 is observed, and the problem is
to estimate XN

1 from YN
1 . Optimal Bayesian methods can be used for

the classic hidden Markov models (HMMs), whose distribution is
defined with

( ) = ( ) ( | ) ( | ) ( | )… ( | ) ( | ) ( )−x yp p x p y x p x x p y x p x x p y x, . 1
N N

N N N N1 1 1 1 1 2 1 2 2 1

HMMs can also be defined as verifying two hypotheses:

( )X is Markov; 2N
1

∏( | ) = ( | )
( )=

y xp p y x .
3

N N

n

N

n n1 1
1

Let us notice that (3) means that the random variables …Y Y, , N1 are
independent conditionally on XN

1 ; for this reason we will call the
classic HMM (2) and (3) “HMM with independent noise” (HMM-
IN).

It is possible to consider more general models in which both
processes ( )X Y,N N

1 1 and XN
1 are Markov and in which the same

Bayesian processing as in HMM-IN remains possible. The dis-
tribution of such models is written

( | ) = ( | ) ( | ) ( )+ + + + +p x y x y p x x p y x y x, , , , . 4n n n n n n n n n n1 1 1 1 1

In these kind of models, called HMM with dependent noise
(HMM-DN) Y1,…,YN are (possibly) dependent conditionally on XN

1 .
Thus an HMM-IN is an HMM-DN for which

( | ) = ( | )+ + + +p y x y x p y x, ,n n n n n n1 1 1 1 .

Remark 2.1. It has been shown in [41,40] that the Markovianity of
XN

1 is not even required, and the following model called “pairwise
Markov model” (PMM):

( )( )( ) ∑= |
( )=

−

+ +x yp p x y p x y x y, , , ,
5

N N

n

N

n n n n1 1 1 1
1

1

1 1

allows the same processing than HMM-DNs.

In this paper we will deal with the stationary reversible case,
which means that ( )+ +p x y x y, , ,n n n n1 1 does not depend on

= … −n N1, , 1, and the distributions ( | )+ +p x y x y, ,n n n n1 1 and
( | )+ +p x y x y, ,n n n n1 1 are equal. In that case, an HMM-DN is a parti-

cular case of PMM for which we have

( | ) = ( | ) ( )+ + + +p y x x p y x, , 6n n n n n1 1 1 1

for all ∈ [ − ]n N1, 1 , see [41]. Thus in the model considered in this

paper we have simultaneously (4) and (6). Let us notice that (6)
does not imply that ( | )+ +p y x y x, ,n n n n1 1 can be reduced to a simpler
expression: the distribution of +Yn 1 conditional on +X Y X, ,n n n 1 can
depend on the three variables.

The distribution of such a stationary reversible HMM-DN
⎛
⎝⎜

⎞
⎠⎟X Y,N N

1 1 is defined by

( ) = ( ) ( | ) ( )p x y x y p x x p y y x x, , , , , , . 71 1 2 2 1 2 1 2 1 2

The aim of this paper is to consider ( | )p y y x x, ,1 2 1 2 in (7) under very
general form and to propose a way for its estimation, together
with ( )p x x,1 2 , from the observed sequence YN

1 . More precisely, for
given ( )x x,1 2 , ( | )p y y x x, ,1 2 1 2 is defined by

� two margins ( | ) = ( | ) = ( )p y x x p y x f y, x
l

1 1 2 1 1 11
and ( | )p y x x,2 1 2

= ( | ) = ( )p y x f yx
r

2 2 22
, according to (6) (l and r stand for ‘left’ and

‘right’ to distinguish between the left and right variables, see
below);

� a copula C with pdf ( ) ( )| = ( ) ( )⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟c F y F y x x c F y F y, , ,x

l
x
r

x x x
l

x
r

1 2 1 2 , 1 21 2 1 2 1 2
,

where F is the cumulative distribution function (cdf) corre-
sponding to f.

We recall that a copula C is defined as a cumulative distribution

function on [ ]0, 1 2 such that the corresponding marginal cumula-
tive functions are identity, which also means that the corre-
sponding marginal distributions on [ ]0, 1 are uniform distribu-

tions, see e.g. [10]. Let ( )h y y,1 2 be a probability distribution on 2,

which will be assumed continuous in this paper. Let ( )H y y,1 2 be

the corresponding cumulative function, ( )h yl
1 and ( )h yr

2 the

corresponding marginal densities, and ( )H yl
1 , ( )H yr

2 the associated
cumulative functions. According to Sklar's theorem [11] there
exists an unique copula C such that

( )( ) = ( ) ( ) ( )H y y C H y H y, , . 8
l r

1 2 1 2

Setting ( ) = ∂∂ ( )
∂ ∂

c u v
C u v
u v

,
,

and deriving (8) with respect to y1, y2

gives

( ) = ( ) ( ) ( ( ) ( )) ( )h y y h y h y c H y H y, , . 9
l r l r

1 2 1 2 1 2

Thus any continuous probability distribution ( )h y y,1 2 is given by

a triplet hl, hr, and a probability distribution c on [ ]0, 1 2 with
uniform margins. Conversely, such a triplet defines a probability
distribution on [ ]0, 1 2 with (9). Such a representation of ( )h y y,1 2 is
of interest as every distribution among hl, hr, c can be modified
independently from the two others. For example, a Gaussian co-
pula ( )h y y,1 2 is given by Gaussian margins hl, hr, and a Gaussian
copula c. Replacing in (8) cwith another non Gaussian copula ′c we
obtain a non Gaussian distribution ′( )H y y,1 2 with Gaussian mar-
gins. We can also keep the Gaussian copula c and replace the
Gaussian margins by any other ones. This offers a very rich set of
possibilities easy to handle with.

We will assume that for each Ω( ) ∈x x,1 2
2, each fx

l
1
and each f x

r
2

belongs to a parametric set of distributions, which themselves
belongs to a finite family of parametric sets of distributions. For
example, imagine that f l1 can be Gaussian or Gamma, f r1 can be
Beta, Gamma or Rayleigh, f l2 can be Beta or Gamma, f r2 can be
exponential and so on for = …x K3, ,1 , = …x K3, ,2 . Thus, for each
( = = )x i x j,1 2 , we have to find what is the general form of the
distributions f li and f rj , and we have to find the parameters, which
precisely define the distribution of the determined shape. Simi-
larly, for each ( = = )x i x j,1 2 we have to find general form of copula
ci j, and estimate the parameters, which set the copula in the set of
copulas having the same form. For example, c1,1 can be Gumbel or
Gaussian, c1,2 can be Gaussian or Clayton, c2,1 can be Student,
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