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In this paper, we consider estimating multiple Gaussian graphs with a similar sparsity structure. Most
related solving methods, such as GGL (Group graphical lasso) and FMGL (Fused multiple graphical lasso),
focus on the information of the edge values, and pay few attention to the estimation based on structure
information. We construct a jointly sparse penalty to encourage graphs to share a similar sparsity
structure by utilizing information of the common structure across the graphs. The new objective function
is neither convex nor differentiable. Combining block coordinate descent and majorization-minimization
strategies, we derive a new re-weighed algorithm to solve the problem by transforming the subproblems
in every iteration into convex ones. Experimental results show that the proposed algorithm outperforms
FMGL and GGL when the sparsity structure is similar but the edge values are not.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The relationship among multiple variables can be revealed by
an undirected graph, where each of the nodes equals a variable
(feature), and the dependence between any two edges of the graph
can be described by the elements of a matrix. Due to this character,
the estimation of undirected graphical models can be applied in
many fields, such as computer vision, finance, social networks and
bio-informatics [1-4]. One typical instance is the analysis of gene
expression data. Genes tend to work in groups based on their
biological functions, and there are some regulatory relations
among genes [5]. Such biological knowledge can be expressed as a
graph, where nodes are the genes, and edges represent the reg-
ulatory relationships. Graphical models provide a useful tool for
modeling these relations and exploring gene activities [6].

In this paper, we focus on the undirected Gaussian graphical
models (GGMs), which is the most popular undirected graphs. In
GGMs, all the samples (observations) follow Gaussian distribu-
tions. Assume that a Gaussian graph has p nodes, each of which
represents a distinctive variable. Denote the variable vector as Y
and the inverse of the covariance matrix (precision matrix) as @,
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where Y € R? and ® € RP*P. With all other variables given, any two
variables y; and y; are conditionally independent, if and only if the
corresponding element [@]; is zero. Since the precision matrix can
describe the relationship among the variables, the problem of
learning GGMs is equivalent to estimating the precision matrix
[7-9].

Many methods have been proposed to estimate the precision
matrices of GGMs. Minimizing the negative log-likelihood function
is most popular, since it can lead to an unconstrained convex pro-
blem with respect to the precision matrices. Denote the data set as
X € R™P, where n is the number of the observations. Thus, each
row in the X represents an observation. Denote S as the empirical
covariance matrix of X, where S = X'X/n. The problem of mini-
mizing the negative log-likelihood function is shown as follows:
min — log det ® + trace(S®).

) ey

Minimizing the negative log-likelihood function equals the
maximum likelihood estimate (MLE), which always yields to a
dense solution [6,10,11]. However, the precision matrix is naturally
sparse in practical applications, since there are many conditionally
independent pairs of nodes in a graph. Therefore, MLE is far from
satisfactory [6].

The key problem in this field comes down to identifying the
sparsity structure of the precision matrix ©. As a natural choice,
the [, regularization is employed by numerous researchers to in-
duce sparsity. In 2006, Meinshausen proposed a penalized re-
gression approach to achieve sparsity [12], which is extended by
Peng [13]. Yuan and Lin [14], Friedman et al. [15], Banerjee et al. [7]
and Rothman et al. [16] discussed penalized log-likelihood
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approaches instead, which aim to solve the following problem:

m@}n — log det(®) + trace(S®) + 4] © ||;, Q)
where 4 is a non-negative penalty parameter, and || © |l; denotes
the sum of the absolute values of the off-diagonal elements of ©
[17]. In general, a larger penalty parameter A results in more zero
elements in the precision matrix, which leads to sparsity to the
solution [18].

However, the methods mentioned above assume that the ob-
servations are independently drawn from a single Gaussian dis-
tribution, which is unreasonable. In many practical data sets, ob-
servations come from different distributions [19]. For example,
suppose that we have a collection of gene expression measure-
ment samples from cancer patients and healthy people. In order to
estimate the graphical models for the cancer samples and the
normal samples, one would expect the two graphical models to be
similar in structure to each other, but may also have differences
stemming from the dysregulation of gene expression in cancer
[17]. Estimating the two graphs separately is unable to utilize the
information across the graphs to exploit the similarities between
the graphs, while just estimating a single graph for both of the
classes contradicts with the fact that the true graphs are not ex-
pected to be identical. For multiple GGMs, graphs share a similar
sparsity structure, but maybe to have distinctive edges stemming
from individual differences. In such cases, the joint estimation can
borrow strength across different graphs to reveal the common
structure shared by the graphs and the differences among them. It
can also reduce the variance of the estimation.

From the perspective of multi-view learning, multiple GGMs
can be regarded as a special case of it. Each Gaussian graph equals
a view. In multi-view graph learning, views may be obtained from
multiple sources or different features subsets [20]. Similarly, in
multiple GGMs, each graph represents the activities of one group.
Both multi-view graph learning and multiple GGMs borrow in-
formation across each graph to better solve the optimization
problem [21-24].

To achieve joint estimation, various penalty functions are pro-
posed to estimate the common structure shared by multiple
Gaussian graphs [8,6,25]. The details of the existing penalties will
be discussed in Section 2.1. These penalties hold desirable esti-
mation accuracy only for the cases where the corresponding ele-
ments in each precision matrix are close enough. However, in
general cases, the values of the corresponding edges in each
Gaussian graphs come from different distributions, and even
possibly deviate greatly from each other. The existing penalties
focus on the edge values, and pay few attention to utilizing the
information of the structure. Thus, the structure is difficult to be
accurately estimated merely with the information of the edge
values in the general cases. From this motivation, we construct a
jointly sparse penalty, which utilizes the structure information
across the graphs to deal with the general cases.

In this paper, we address the general cases where all Gaussian
graphs share a similar structure, but the values of the same edges
in each graph can be quite different. The corresponding nonzero
elements in each precision matrix are allowed to have different
signs and even from different distributions. In general cases, we
consider GGMs with a similar sparsity structure, and we also allow
small differences among the precision matrices. Since GGL and
FMGL have limitations for the general cases, we consider the
problem of simultaneously estimating GGMs via a new penalized
log-likelihood approach. In the new model, we construct a jointly
sparse penalty function to enhance sparsity as well as to en-
courage the graphs to share a similar structure. One remarkable
point is that we can maintain the differences of corresponding
edge values among the graphs when estimating the similarities in

structure. Our model yields to a non-convex and non-differential
problem. To solve the problem, we combine the block coordinate
descent algorithm with the majorization-minimization algorithm
to derive a new re-weighted algorithm, where subproblems in
each iteration are convex. This kind of method was first proposed
in [26], and it was shown to be effective for sparse multiple
measurement problems.

The rest of the paper is organized as follows. In Section 2, we
present the basic problem formulation, and introduce two popular
method FMGL and GGL. In Section 3, we construct the jointly
sparse penalty and derive a new re-weighted algorithm to solve
the new model. In Section 4, a series of numerical experiments are
conducted to present the overall performance of the proposed
algorithm. Section 5 concludes the whole paper.

2. Problem formulation
2.1. Penalized MLE approach

Suppose that there are K distinctive Gaussian graphs, from
which we are given K data sets X' € R¥*?, i = 1, ..., K, where n; is
the number of observations and p is the number of variables. The p
variables are the same for all K data sets. Moreover, observations in
each data set X' are independent and identically distributed with
Gaussian distribution N/, =), where ;' € R?, and 2 is a symmetric
positive definite p x p matrix. The [; penalized MLE only achieves
sparsity in solutions, but we also need to learn the common
structure shared by all the Gaussian graphs. Therefore, researchers
proposed many penalty functions to urge all the graphs to match
each other in sparsity structure [27]. In the penalized MLE ap-
proach, one usually considers the following problem:

K
min Y ( - log det(®") + trace(s*®")) + P(®),
o 4 3

where  P©) =43, X105l + ,P©), ©=1(0.,0", and

6§ = [@";. A; is the non-negative penalty parameter.

The P(®) penalty is employed to encourage a similar sparsity
structure across the K precision matrices. Yuan and Lin applied
group graphical lasso (GGL) penalty to induce a similar pattern of
non-zero elements to each ©* in [8]. Hoefling proposed the fused
graphical lasso (FGL) penalty to encourage all graphs to share si-
milar sparsity structure in [25], and Yang et al. extended it to the
fused multiple graphical lasso (FMGL) in [6].

2.2. Group graphical lasso and fused multiple graphical lasso

In GGL and FMGL, the penalty functions are considered as
follows:

. K K 2
® GGL: P(@) =4 Y, Zi#j |91§,<| + Zl_#j(zkzl%k) Wz,

. K K, K-1 k k+1
® FMGL: B(0) = 4 Xy, T 1081 + 1 T4y X108 — 0f 1.

P.(®) and P:(®) share an identical first item, which results in a

sparse solution when A, is large enough.

The second item in P; encourages a similar sparsity pattern
across all the graphs, i.e. there will be a tendency for the nonzero
elements in the estimated precision matrices to occur in the same
places [17]. Since the first item in GGL is l; regularization, the
proportion of the two items in GGL may be sensitive, where small
changes of 4/, may results in huge differences to the results. The
second item in P; penalizes less for those elements whose position
are different across the precision matrices. When the sparsity
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