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a b s t r a c t

Statistical inference subject to nonnegativity constraints is a frequently occurring problem in learning
problems. The nonnegative least-mean-square (NNLMS) algorithmwas derived to address such problems
in an online way. This algorithm builds on a fixed-point iteration strategy driven by the Karush–Kuhn–
Tucker conditions. It was shown to provide low variance estimates, but it however suffers from un-
balanced convergence rates of these estimates. In this paper, we address this problem by introducing a
variant of the NNLMS algorithm. We provide a theoretical analysis of its behavior in terms of transient
learning curve, steady-state and tracking performance. We also introduce an extension of the algorithm
for online sparse system identification. Monte-Carlo simulations are conducted to illustrate the perfor-
mance of the algorithm and to validate the theoretical results.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Online learning aims at determining a mapping from a dataset to
the corresponding labels when the data are available in a sequential
fashion. In particular, algorithms such as the Least-Mean-Square
(LMS) and the Recursive Least-Square (RLS) algorithms minimize the
mean square-error cost function in an online manner based on in-
put/output measurement sequences [1,2]. In practice, rather than
leaving the parameters to be estimated totally free and relying on
data, it is often desirable to introduce some constraints on the
parameter space. These constraints are usually introduced to impose
some specific structures, or to incorporate prior knowledge, so as to
improve the estimation accuracy and the interpretability of results in
learning systems [3,4]. The nonnegativity constraint is one of the
most frequently used constraints among several popular ones [5]. It
can be imposed to avoid physically unreasonable solutions and to
comply with physical characteristics. For example, quantities such as
intensities [6,7], chemical concentrations [8], and material fractions
of abundance [9] must naturally fulfill nonnegativity constraints.
Nonnegativity constraints may also enhance the physical interpret-
ability of some analyzed results. For instance, Nonnegative Matrix
Factorization leads to more meaningful image decompositions than
Principle Component Analysis (PCA) [10,11]. PCA and neural net-
works can also be conducted subject to nonnegativity constraints in
order to enhance result interpretability [12,13]. Finally, there are

important problems in signal processing that can be cast as
optimization problems under nonnegativity constraints [14]. Other
applications of learning systems related to nonnegativity constraints
can be found in [15–17,5,18–20].

Nonnegativity constrained problems can be solved in a batch
mode via active set methods [21,22], gradient projection methods
[23,24], and multiplicative methods [25], to cite a few. Online
system identification methods subject to nonnegativity constraints
can also be of great interest in applications that require to adap-
tively identify a dynamic system. An LMS-type algorithm, called
the non-negative least-mean-square (NNLMS) algorithm, was
proposed in [26] to address the least-mean-square problem under
nonnegativity constraints. It was derived based on a stochastic
gradient descent approach combined with a fixed-point iteration
strategy that ensures convergence toward a solution satisfying the
Karush–Kuhn–Tucker (KKT) conditions. In [27], several variants of
the NNLMS were derived to improve its convergence behavior in
some sense. The steady-state performance of these algorithms was
analyzed in [28]. It was observed that one limitation of the NNLMS
algorithm is that the filter coefficients suffer from unbalanced
convergence rates. In particular, convergence of small coefficients
in the active set (the set of zero-valued optimum weights), that is,
those tending to zero at steady-state, progressively slows down
with time and almost stalls when approaching the steady-state
(see [27] and also Fig. 3(a)). Another limitation of the NNLMS al-
gorithm is its vulnerability to the occurrence of a large coefficient
value spread. A large spread of coefficient values in NNLMS lead to
a large spread of the weight updates, increasing the coefficient
variances and complicating the choice of an adequate step-size.
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The Exponential NNLMS algorithm was proposed in [27] to alle-
viate the first limitation. This algorithm applies a Gamma scaling
function to each component of the NNLMS update. Although this
NNLMS variant leads to more balanced coefficient convergence
rates, it does not completely solve large coefficient update spread
problem, as the scaling function is still unbounded on the coeffi-
cient values. Moreover, the exponential scaling operation tends to
be computationally expensive for real-time implementations re-
quiring a large number of coefficients. Thus, it is of interest to
investigate alternative algorithms that may simultaneously ad-
dress these two NNLMS limitations.

In this paper, we propose a variant of the NNLMS algorithm
that balances more efficiently the convergence rate of the different
filter coefficients. The entries of the gradient correction term are
reweighted by a bounded differentiable sign-like function at each
time instant. This gives the filter coefficients balanced convergence
rates and largely reduces the sensitivity of the algorithm to large
coefficient spreads. The stochastic behavior of the algorithm is
then studied in detail. A statistical analysis of its transient and
steady-state behavior leads to analytical models that are able to
accurately predict the algorithm performance. In particular, con-
trary to a previous analysis [27] the algorithm tracking behavior is
studied using a nonstationarity model that allows for a bounded
covariance matrix of the optimal solution, a more practical sce-
nario. The accuracy of the derived analytical models is verified
through Monte Carlo simulations. Finally, the applicability of the
proposed algorithm to problems whose definition does not specify
nonnegativity constraints on the coefficients is illustrated through
an example of identification of sparse system responses.

The rest of this paper is organized as follows. Section 2 reviews
the problem of system identification under nonnegativity con-
straints and briefly introduces the NNLMS algorithm. Section 3
motivates and introduces the new variant of the NNLMS algo-
rithm. In Section 4, the behavior in the mean and mean-square-
error sense, and the tracking performance of this algorithm are
studied. Section 5 provides simulation results to illustrate the
properties of the algorithm and the accuracy of the theoretical
analysis. Section 6 concludes the paper.

In this paper normal font letters (x) denote scalars, boldface
small letters (x) denote vectors, boldface capital letters (X) denote
matrices with I being the identity matrix. All vectors are column
vectors. The superscript (·)⊤ represents the transpose of a matrix or
a vector, {·}tr denotes trace of a matrix, and {·}E denotes statistical
expectation. Either Dx or { … }D x x, , N1 denote a diagonal matrix
whose main diagonal is the vector = [ … ]⊤x x x, , N1 . The operator

{·}diag forms a column vector with the main diagonal entries of its
matrix argument.

2. Online system identification subject to nonnegativity
constraints

Consider an unknown system with input-output relation
characterized by the linear model:

α( ) = ( ) + ( ) ( )⋆⊤xy n n z n 1

with α α α α= [ … ]⋆ ⋆ ⋆ ⋆ ⊤, , , N1 2 an unknown parameter vector, and
( ) = [ ( ) ( − ) … ( − + )]⊤x n x n x n x n N, 1 , , 1 the vector of regressors

with positive definite correlation matrix >R 0x . The input signal x
(n) and the desired output signal y(n) are assumed zero-mean
stationary. The modeling error z(n) is assumed zero-mean sta-
tionary, independent and identically distributed (i.i.d.) with var-
iance sz

2, and independent of any other signal. We seek to identify
this system by minimizing the following constrained mean-square
error criterion:

α α

α

= ( )
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where the nonnegativity of the estimated coefficients is imposed
by inherent physical characteristics of the system, and α( )J is the
mean-square error criterion

α α( ) = {[ ( ) − ( )] } ( )⊤xJ E y n n 32

and αo is the solution of the constrained optimization problem (2).
The Lagrange function associated with this problem is given by

α α λ αλ( ) = ( ) − ⊤L J, , with λ being the vector of nonnegative La-
grange multipliers. The KKT conditions for (2) at the optimum αo

can be combined into the following expression [29,26]

αα [ − ∇ ( )] = ( )α J 0 4i
o o

i

where ∇α stands for the gradient operator with respect to α. Im-
plementing a fixed-point strategy with (4) leads to the compo-
nent-wise gradient descent updating rule [26]

α αα α η α( + ) = ( ) + ( ) ( ( )) ( )[ − ∇ ( ( ))] ( )αn n n f n n J n1 5i i i i i

where η( )n is the positive step size that controls the convergence
rate, α( ( ))f ni is a nonnegative scalar function of vector α that
weights its ith component αi in the update term. Selecting dif-
ferent functions α( ( ))f ni leads to different adaptive algorithms.
Particularly, making α( ( )) =f n 1i , using stochastic gradient ap-
proximations as done in deriving the LMS algorithm, and rewriting
the update equation in vectorial form, we obtain the NNLMS al-
gorithm [26]:

α α η( + ) = ( ) + ( ) ( ) ( ) ( ) ( )αD xn n n n n e n1 6

where ( )αD n is the diagonal matrix in which the elements of α( )n
compose the main diagonal, and e(n) is the estimation error at
time instant n:

α( ) = ( ) − ( ) ( ) ( )⊤ xe n y n n n . 7

This iteration is similar in some sense to the expectation max-
imization (EM) algorithm [30]. The algorithm requires to be in-
itialized with positive values. Suppose that α( )n is nonnegative at
time n. If the step size satisfies

η< ( ) ≤
− ( ) ( ) ( )

n
e n x n

0 min
1

,
8i i

for all ∈ { ( ) ( ) < }i j e n x n: 0j , the nonnegativity constraint is satisfied
at time +n 1 with (6). If ( ) ( ) ≥e n x n 0i , there is no restriction on the
step size to guarantee the nonnegativity constraint. Convergence
of the NNLMS algorithm was analyzed in [26]. Its steady-state
excess mean-square error (EMSE) was studied in [28].

3. Motivating facts and the algorithm

3.1. Motivation

The weight update in (6) corresponds to the classical stochastic
gradient LMS update with its ith component scaled by α ( )ni . The
mean value of the update vector ( ) ( ) ( )αD xn n e n is thus no longer in
the direction of the gradient of α( )J , as is the case for LMS. On the
other hand, it is exactly this scaling by α ( )ni that enables the cor-
rections α ( ) ( ) ( )n x n e ni i to reduce gradually to zero for coefficients
α ( )ni tending to zero, which leads to low-variance estimates for
these coefficients.1 If a coefficient α ( )nk that approaches zero turns

1 The update for these weights will be necessarily small in amplitude as α ( )ni
tends to zero, thus leading to a small variance of the adaptive coefficient.
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