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a b s t r a c t

A class of improved least sum of exponentials (ILSE) algorithms is proposed by incorporating a scaling
factor into the cost function of LSE in this paper. The even-order moment information regarding error is
influenced by the scaling factor. However, the ILSE algorithm based on a fixed scaling factor can only
provide a tradeoff between the convergence rate and steady-state excess-mean-square error (EMSE).
Therefore, a variable scaling factor ILSE (VS-ILSE) algorithm is also proposed to improve the convergence
rate and steady-state EMSE, simultaneously. To facilitate analysis, the energy conservation relation of
ILSE is established, providing a sufficient condition for mean square convergence and a theoretical value
of the steady-state EMSE. In addition, the kernel extensions of ILSE and VS-ILSE are further developed for
performance improvement. Simulation results illustrate the theoretical analysis and the excellent per-
formance of the proposed methods.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive filters (AF) have been widely applied in system
identification, channel equalization, echo cancelation and many
other signal processing applications [1–3]. According to the num-
ber of used data, AFs can be divided into three categories, i.e., the
least mean-square algorithms (LMS), the affine projection algo-
rithms (APA), and the recursive least squares algorithms (RLS)
[4,5]. Among these algorithms, LMS is the most popular filtering
algorithm due to its robustness, good tracking capability and
simplicity [1,4]. Moreover, most other filters are developed on the
basis of LMS.

In the LMS family, different p-powers of the error, i.e., | |e p, are
used as the cost function to realize the desirable performance. The
sign algorithm (SA) [6] utilizes the error with p¼1 to combat the
impulsive interferences. For Gaussian interferences, p¼2 is used to
generate the traditional LMS. The least mean absolute third
(LMAT) [7] with p¼3 and least mean fourth (LMF) [8] with p¼4
employ a high order power of the error to achieve a better trade-
off between the transient and steady-state performance. In addi-
tion, a linear combination of p¼2 and p¼4 is proposed in the
least-mean mixed-norm (LMMN) algorithm [9] to further improve
the performance of LMS and LMF. Another combination of p¼1
and p¼2 is used to construct the robust mixed-norm (RMN) al-
gorithm [10], leading to improvement of the robustness to

impulsive interferences. However, the LMMN and RMN only con-
sider a linear combination of two kinds of errors with higher order
errors neglected. Therefore, higher order powers of the error
should be introduced to make full use of the information hidden in
the error. To this end, the cost function based on the even mo-
ments of the error [11], namely the weighted even moment
(WEM) algorithm, is used to achieve better performance, espe-
cially in the case of Gaussian noise. Moreover, WEM necessitates
appropriate setting of the combination parameters, which may be
infeasible in practice [12]. Therefore, to achieve a weighted sum of
the even-order moments of the error as the cost function, the
smoothed least mean p-power error (SLMP) algorithm [13] in-
troduces a smoothing factor in the least mean p-power error
(MPE) criterion [14] in order to take into account the influence of
different moments of the error on the performance. The smooth-
ing factor is very crucial for the performance of SLMP. Thus, an
optimization method for determining the parameters is required
in practice.

In addition, the logarithmic and exponential cost functions
employ the high order power of the error using Taylor series ex-
pansion. The logarithmic cost function [15–17] intrinsically com-
bines the higher and the lower order measures of the error into a
single continuous update progress. The representative logarithmic
algorithms include the least logarithmic absolute difference
(LLAD) and the least mean logarithmic square (LMLS) algorithms
[16]. Unfortunately, only when the error is small, the logarithmic
algorithms can be regarded as a linear combination of different
error powers. The exponential cost function [12,18,19] has been
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proven to be a real linear combination of infinite number of the
error powers. Nevertheless, the exponential algorithms only ac-
celerate the convergence rate but with no significant improvement
in the steady-state performance.

Inspired by the least sum of exponentials (LSE) [18] and the
exponential-error least-mean fourth (EELMF) [20] methods, we
propose a class of improved least sum of exponentials (ILSE) al-
gorithms by introducing a scaling factor for performance im-
provement. The sufficient conditions for mean-square con-
vergence and the theoretical value of steady-state EMSE for the
ILSE are derived by utilizing the energy conservation relation. To
further improve performance, an efficient variable scaling factor
algorithm and kernel methods are incorporated into the ILSE, re-
sulting in the variable scaling factor ILSE (VS-ILSE), kernel ILSE
(KILSE), and the kernel variable scaling factor ILSE (KVS-ILSE)
algorithm.

2. Improved least sum of exponentials algorithm

2.1. Review of the LSE algorithm

The cost function of LSE [18] is given by

( )( ( )) = [ ( )] = [ ( )] + [ − ( )] ( )J e i e i e i e icosh
1
2

exp exp 1

where (·)cosh is the hyperbolic cosine function, and e(i) denotes
the prediction error that is the difference between the desired
signal d(i) and the actual output y(i).

Let ( − )w i 1 and ( )u i denote the row weight vector and the row
input vector, respectively. The output of filter is therefore

( ) = ( − ) ( )w uy i i i1 T . The prediction error can be obtained by
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Taking the Taylor series expansion of ( ( ))J e i in (1) at the point
of zero gives
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where k is the nonnegative integer.
Obviously, the cost function of LSE is a linear combination of all

the errors with even moments. Therefore, more information hid-
den in the errors can be embodied in LSE. According to the

steepest descent method, the weight update form of the LSE can
be expressed by

η( ) = ( − ) + [ ( )] ( ) ( )w w ui i e i i1 sinh 4

where (·)sinh is the hyperbolic sine function and η denotes the
step size.

2.2. Proposed ILSE algorithm

Inspired by [20], we introduce a scaling factor λ > 0 in (1) to
construct a new cost function, i.e.,
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The Taylor series expansion of λ( ( ) )J e i , about zero can be ex-
pressed by
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Fig. 1 shows the curves of cost functions λ( ( ) )J e i , and the
corresponding gradient curves with different values of λ. It can be
seen from Fig. 1 that, when e(i) is larger, λ( ( ) )J e i , with larger λ has
a larger gradient, resulting in a faster convergence rate; otherwise,

λ( ( ) )J e i , with smaller λ has a flat gradient curve, leading to the
improvement of filter stability. Hence, λ should have a larger value
at the beginning of filtering, leading to a faster initial convergence
rate. When the filter approaches its steady state, λ with smaller
value will provide a smaller steady-state error. This process can be
implemented using variable scale factor strategy.

Take the partial derivative of λ( ( ) )J e i , in (5) with respect to
( − )w i 1 as follows:
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The weight update of ILSE is therefore obtained by the steepest
descent method, i.e.,

η λ η( ) = ( − ) + [ ( )] ( ) = ( − ) + ( ( )) ( ) ( )w w u w ui i e i i i f e i i1 sinh 1 8

where λ( ( )) = [ ( )]f e i e isinh denotes the nonlinear function of the
error.

Remark 1. Compared with the Taylor series expansion of LSE in
(3), the one of ILSE in (6) has an additional term λ2k�1, which can
be regarded as the weighted LSE cost function. The stochastic in-
formation of e(i) is influenced by λ directly. The higher-order even

Fig. 1. Curves of cost functions λ( ( ) )J e i , and the corresponding gradient curves with different scaling factors: (a) λ( ( ) )J e i , versus e(i); (b) gradient versus e(i).
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