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In this paper, two new algorithms are proposed for non-orthogonal joint matrix diagonalization under
Hermitian congruence. The idea of these two algorithms is based on the so-called Jacobi algorithm for
solving the eigenvalues problem of Hermitian matrix. The algorithms are then called ‘general Jabobi-like
diagonalization’ algorithms (GERALD). They are based on the search of two complex parameters by the
minimization of a quadratic criterion corresponding to a measure of diagonality. Lastly, numerical si-
mulations are conducted to illustrate the effective performances of the GERALD algorithms.
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1. Introduction

Recently, the joint diagonalization (JD) by congruence problem
of a set of Hermitian matrices has arisen an increasing interest in
the area of blind source separation (BSS) [1-11], independent
component analysis (ICA) [12,13] and biomedical signal processing
[14]. It is also noted that the canonical polyadic decomposition of
third order tensors can be seen as a JD problem, see e.g. [15].
Hence, a number of algorithms have been proposed in the litera-
tures [6-24], and could be basically divided into two categories:
orthogonal and non-orthogonal ones. This depends on whether
the searched diagonalizing matrix is unitary or not.

We notice that the unitary case has first been considered yielding
the two well-known orthogonal algorithms JADE [19,20,3] and SOBI
[2]. For the JADE algorithm, the mixing matrix is decomposed as a
product of Givens (planar) rotations and each rotation parameter is
derived analytically by minimizing a given objective function. Un-
fortunately, it was shown, see e.g. [21], that the pre-whitened opera-
tion required in practice for any orthogonal JD algorithm can adversely
affect the overall performances. It is the main reason why nowadays
the non-orthogonal case has received much attention.

In [6], the AC-DC (Alternating Columns-Diagonal Centers) al-
gorithm is proposed. It is based on the minimization of the error
model weighted least squares criterion and has a linear
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convergence rate. In [7], based on the property of strictly diag-
onally dominant matrices, the FFDIAG algorithm is proposed in the
real case. It allows a quite simple iterative estimation of the di-
agonalizing matrix. A generalization of this algorithm to the two
complex cases is proposed in [24]. In [9], the FAJD algorithm is
proposed and is based on a column by column estimation of the
diagonalizing matrix. by minimizing a weighted least squares
criterion associated to a constraint to avoid the degenerate solu-
tion. In [5], the UWEDGE algorithm is proposed. It uses weighted
matrices and has a connection to FFDIAG. In [16], a block diagonal
algorithm is proposed that is based on an efficient nonlinear
conjugate gradient (NCG) optimization procedure.

More recently, the ideas of Jacobi algorithms was developed in
the non-orthogonal case. The main reason is the potential sim-
plicity of such algorithms allowing a possible parallelization. Per-
haps one of the first such related work was proposed in [13]| where
two algorithms in the real case was proposed based on the LU and
QR decompositions of the diagonalizing matrix. In [22], using the
same decompositions, the complex case is considered. In [17], the
JDi based both on rotations and hyperbolic rotations is proposed in
the real case. A generalization to the complex case is proposed in
[18]. In [23], the ALUJA (a new decoupled Jacobi-like algorithm)
algorithm is proposed. It is based on both an LU decomposition of
the diagonalizing matrix and on an adapted local criterion.

In this paper, we propose a new approach for Jacobi-like al-
gorithm where the elementary matrix under consideration for the
Jacobi like procedure depends explicitly on two parameters. These
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two parameters are derived optimally altogether. The generic al-
gorithm is called ‘GEneRal JAcobi-Like Diagonalization’ (GERALD)
The proposed algorithm is also shown to minimize the considered
criterion at each iteration and the convergence to a local minima is
ensured. In a second time, inspired by the works in [17] and [7,24],
we show that by using the assumption that we are close to a di-
agonalizing solution, we can obtain an analytical minimizing so-
lution for the two parameters. Interestingly enough, we also show
that this last algorithm has a close link with the one in [24].

Our approach is different from the ones in [13,23] because
there the elementary matrix only depends on one parameter. As
shown by the following derivations, the proposed approach is then
different. It is also clearly different from the ones in [17,18] since
we consider a new parametrization of the elementary matrix with
no rotation (classical nor hyperbolic).

The paper is organized as follows. In Section 2, we will review the JD
problem, present the considered criterion and the overall description of
the proposed algorithm. In Section 3, the two optimal parameters of
each elementary matrix will be derived. In Section 4, numerical simu-
lations are given for illustrating the performance of the two proposed
algorithms. Finally, a conclusion will be drawn in Section 5.

Notation. Scalars are denoted by a lower case (a), vectors by a
boldface lower case (a) and matrices by a boldface upper case (A).
a; is the i-th element of the vector a and g;; is the (i, j)-th element
of the matrix A. I is the identity matrix. ZDiag{-} is a matrix op-
erator that sets to zero the diagonal of the argument matrix. ||-||r is
the Frobenius norm of the argument matrix. Let ¢ be a complex
number, we denote its conjugate by ¢ and its modulus by Icl. The
superscript (-)" denotes the conjugate transpose.

2. Problem formulation and proposed algorithm

We assume that we have a set of Hermitian matrices
A= {Ay = (agij) € CVN, k=1, ..., K} that all share the following
common decomposition:

A = BD;B" + E, 1)

where B € CV*M(N > M) denotes the so-called mixing matrix that
is assumed full column rank, D, € CM*M and E, € CN*N are re-
spectively diagonal matrices and additive noise matrices for all
k=1, .., K.

The aim of JD by congruence is to seek a full row rank matrix
Q € CYxN that makes the transformed matrices

T, = QA Q" )

all as diagonal as possible. The matrix Q is referred to as “de-
mixing” matrix in the context of BBS.
In this paper, we consider the following objective function to be
minimized
K

J(Q = ) || ZDiag{Ti}II}.
k=1 (3)

Ignoring the diagonal components, the goal of this objective
function is to minimize the squares of all off diagonal components
for all considered matrices. It can be noticed that a number of JD
algorithms are based on this objective function [13,22,17,18,23].

In Jacobi like algorithms, the estimation of Q is carried by using
a ‘simple’ multiplicative update. It is written as:

Qrew = T+ WVQqq,

where V € CM*M and has a simple structure. In such case, I + V is
called the elementary matrix. The main advantage of the multi-
plicative update is that the property of full row rank of Q can more
easily be maintained. This thus requires that I + V be invertible.

By successive multiplicative updates, the minimization of the
objective function 7;(Q) is solved by considering

A new = QnewAngew = I+ V)Agoad + wH 4

for all possible elementary matrices and that until convergence.

In [13,23], the considered matrix V only depends on one non-
zero component at a given position (ij). Here we propose to
consider a matrix V with two non-zero components at positions (i,
j) and (j,i). Hence, the concrete form of this matrix is given as

0 : 0 : 0

V=V;=(0 : 0 : 0}
0 : 0 : 0

It is easy to see that the matrix I + Vj is non-singular if and only
if v;jv; # 1. In fact numerous computer simulations have proved
that it is really not a problem. However if, very unfortunately, such
a case occurs, then we drop the corresponding update and pursue
with another indexes pair.

For the algorithm, the overall consideration of all indexes pairs
is called a sweep. The algorithm is called ‘GEneRal JAcobi-Like
Diagonalization’ (GERALD) and it is more precisely described in
the table Algorithm 1.

Algorithm 1. The GERALD algorithm.

Input: A, k=1, ..., K (matrices to be joint diagonalized)

1: Initial Q € CV*N, full row rank matrix

2: Update T,«—QAQ" for k=1, ..., K.

3: Repeat

4: fori=1, .., Mdo

5: for j=i+1,..,Mdo

6: Compute V; to minimize 4; in (3).

7: Q—{I+VpQ.

8: Te— A + V)Ted + VpH for k=1, ..., K.
9: end for

10:  end for

11:  Until convergence
Output: Q and T, for k=1, ..., K.

For the GERALD algorithm, a sweep corresponds to the repeat
step 3 is called and the step 5 is called one transformation.
3. Derivations of the optimal updating matrix

Corresponding to the step 6 of the above algorithm description,
our goal is now to find the two optimal parameters v; and vj;
minimizing 7; defined in (3). In this section, we will consider three
strategies for establishing concrete algorithms.

3.1. Direct derivation

Let us denote
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