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a b s t r a c t

A novel eigenspace-based beamforming technique is presented for receiving multipath coherent signals
in the presence of uncorrelated interferences. Firstly, a subaperture minimum variance distortionless
response beamformer based on spatial smoothing is applied, and then its weights are projected onto the
signal-plus-interference subspace of the full-aperture data covariance matrix to obtain the multipath
signals combination beamformer. Theoretical analysis has proved the proposed method can effectively
get the coherent signals combination gain without reducing array aperture. Due to the employment of
eigenspace, our method requires less prior information and converges faster than existing solutions.
Simulation examples illustrate the effectiveness of the proposed technique.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive beamforming techniques have been widely studied dur-
ing the past decades [1]. The objective of beamforming is to adaptively
enhance signals from desired directions and suppress interferences
from other directions using an array of sensors. Conventional adaptive
beamforming methods suffer from signal cancellation in the presence
of coherent or highly correlated signals, which is a common case in
practice due to multipath propagation.

To avoid such signal cancellation, a variety of techniques have been
introduced [2]. Among currently available solutions, spatial smoothing
for regular arrays and its improved versions [3,4] are regarded as the
most promising ones. These methods decorrelate coherent signals
prior to beamforming by dividing array into subarrays and averaging
the data covariance matrices of subarrays. After spatial smoothing, a
subaperture minimum variance distortionless response (MVDR)
beamformer can be adopted to receive the coherent signal frommain-
lobe direction. The limitation of spatial smoothing is that effective
aperture of an array would be significantly reduced. Another in-
evitable disadvantage is, all these approaches tried to nullify sidelobe
coherent signals to prevent them from canceling the main-lobe signal.
However, a truly effective beamformer should constructively combine
coherent signals instead of canceling all but one of them.

Given the direction of arrival (DOA) information of all incident
signals, some beamforming methods estimate the complex am-
plitude of each coherent signal component and impose multiple
constraints on the array for multipath signals combination [5]. The
famous Rake system based on pilots realizes it by evaluating the
delay of each path. In practice, to obtain exact DOAs of all coherent
signals is computationally expensive and pilot symbols are gen-
erally unavailable either. Blind beamformers have been introduced
in [6], but such methods converge slowly and require desired co-
herent signals and interferences to have different statistical
properties.

In this paper, a novel beamformer for receiving multipath co-
herent signals with uncorrelated interferences is presented. It is
designated as eigenspace-based beamformer (ESB) since its key
step is to project weight vector of the subaperture MVDR beam-
former with spatial smoothing onto the signal-plus-interference
subspace of full-aperture data covariance matrix. As shown in si-
mulation results, the proposed beamformer inherits robustness
and rapid convergence rate from conventional eigenspace-based
algorithms. Moreover, it can get both multipath signals combina-
tion gain and full array aperture gain with less prior information.

Throughout the paper, bold lowercase letters are used for
vectors, and bold uppercase letters are for matrices. Superscripts T,
H, and ∗ represent transpose, conjugate transpose, and complex
conjugate respectively. · symbolizes the Euclidean norm and ·
represents absolute value. ×0M N is ×M N zero matrix. I denotes
identity matrix.
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2. Signal model and optimal beamforming technique

2.1. Data modeling

Assume that a group of P fully coherent signals from directions
θ = …,p 1,2 Pp and Q uncorrelated interferences from directions
φ = …,q 1, 2 Qq impinge on a uniform linear array of M omnidirectional
sensors. All the sources are assumed to be narrow-band signals with
the same center frequency. The M�1 received data vector x(t) can be
written as

∑ ∑α θ φ( ) = ( ) ( ) + ( ) ( ) + ( ) ( )= =
x a a nt s t s t t , 1d p

P
p p q

Q
q q1 1

where sd(t) represents the desired signal waveformwith power σd
2 and

αp denotes complex amplitude of the pth coherent signal. a(θ) is the
steering vector to direction θ. sq(t) represents the waveform of the qth
interference. n(t) denotes additive noise vector whose element is with
zero mean and variance σn

2. Eq. (1) can be rewritten in vector form as

( ) = ( ) + ( ) + ( ) = ( ) + ( ) ( )x a A s n As nt s t t t t t , 2I Id d

where ad¼ θ∑ α ( )= ap 1
P

p p denotes the steering vector of sd(t) and the
responsematrix of sources =[ ]A a ,Ad I and φ φ=[ ( )⋯ ( )]A a aI 1 Q . The source

vector ( )=[ ( ) ( )]s t s t ,s tT
d I

T , ( )=[ ( )… ( )]s t s t s tI
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1 Q . Then the covariance
matrix of x(t) is
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where = [ ( ) ( )]R E s t s ts
H and = [ ( ) ( )]R E s t s tI I I

H represent the covariance
matrix of sources and interferences respectively.

2.2. Optimal beamformers

Given x(t), αp and a(θp), the optimal beamformer with max-
imum output signal-to-interference-plus-noise ratio (SINR) can be
directly achieved by the MVDR method. The corresponding weight
vector is determined as

( )= ( )+
−

+
−w R a a R a/ , 4MVDR I n d d

H
I n d

1 1

where = +σ+R A R A II n I I I
H

n
2 . But usually in practice, only the steering

vector of one signal is available, e.g. a(θ1). If we use MVDR
beamformer directly by taking a(θ1) as the desired steering vector,
significant signal cancellation would occur [2].

The minimum mean square error (MMSE) beamformer based
on sd(t) is characterized by the capability to combine coherent
signals as well ([7], Ch.6.12). It has been proved in [7] that weights
of the MMSE beamformer is of the same form as wMVDR given in
(4) statistically.

Next, we briefly demonstrate the steady performance of wMVDR

in terms of the output SINR. Using matrix inversion lemma, the
inversion of +RI n yields

( )( ) ( )σ
σ

σ= + = − +
( )+

− − − −
R A R A I I A R A A A

1
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With uncorrelated interferences, RI is the diagonal matrix with
interference power as its diagonal entry. Meanwhile diagonal en-
tries of A AI

H
I are all M, since φ( ) =a Mq [7]. It is clear that only

the interference whose power is considerably greater than σ /Mn
2

affects signal reception. Then we just take such “strong” inter-
ferences into account in the sequel, so σ −Rn I

2 1 can be neglected
compared with A AI

H
I.

Denoting = − ( )⊥ −P I A A A AI I I
H

I I
H1 as the orthogonal subspace of

interferences, we can deduce from (4) and (5) that
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Eq. (6) indicates that strong interferences can be effectively
nullified by wMVDR. Indeed it has been further demonstrated in [7]
that, the MVDR beamforming technique can perfectly nullify
strong sidelobe jammers regardless of the power of other sources.
Then the output SINR of optimal beamformers is given by
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where Ps, Pn and PI denote the output power of signal, noise and
interferences respectively. Substituting (6) into (7) leads to
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From (8), we find the output SINR of optimal beamformers is
matched to the composite steering vector ad, which is associated
with all the desired coherent signals.

3. Eigenspace-based beamforming technique

Without ad or sd(t), spatial smoothing can be adopted
to enable the conventional MVDR beamformer based on a(θ1)
[3]. The method divides original array into L subarrays in
such a way that the lth subarray data vector is

( ) = [ ( ) ( ) ⋅⋅⋅ ( )] = ⋅⋅⋅ − ++ + −x t x t x t x t l M N, , , , 1, 1l l l l N
T

1 1 , where N is
the number of subarray sensors. Taking forward spatial smoothing as
an instance, the MVDR beamformer with spatial smoothing (desig-
nated as SSB) has the following form [3]

( )θ θ θ= ( ) ( ) ( ) ( )
− −w R a a R a/ , 9SSB smooth

H
smooth

1
1 1 1 1

1
1 1

where =∑ [ ( ) ( )]= x xR E t t /Ll
L

l l
H

smooth 1 . a1(θ1) is a N�1 column vector
denoting steering vector of the first subarray. wSSB cannot be satisfied
as it merely receives the coherent source from θ1, and the spatial
resolution capability of array will decreases due to the use of subarray
aperture.

However, it is worth noting that wSSB given in (9) can reject
sidelobe signals with the mainlobe signal remained [3]. Mean-
while as stated in Section 2.2, sidelobe strong jammers can be
nullified by the MVDR beamforming operation perfectly. With this
in mind, we adopt MATLAB notation ( )A N1: , : to denote the
submatrix of A formed by its first N rows. Hence, the following
relationship holds
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Based on (11), it is evident ARsAHwini is a scaled version of the
ideal steering vector ad, with which we can construct an optimal
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