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a b s t r a c t

A nonlinear dynamical model of a memoryless nonlinear gradient IIR adaptive notch

filter for estimating the frequency of a noisy sinusoid is derived. The model is verified

through simulations, where simulated responses of the estimated frequency are

compared with the responses obtained from the model with good agreement. Con-

vergence properties of the filter are studied using the model, and maximum step sizes

and initial frequency ranges for convergence are determined. The performance of the

adaptive filter in tracking a time-varying signal frequency is also examined.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive estimation of the frequency of a single-tone
sinusoid has applications in many fields, such as radar,
sonar, communications and biomedical engineering. The
infinite-impulse-response (IIR) notch filter is preferred for
this task, as it provides an important advantage over its
FIR counterpart. This advantage is that the number of
parameters required for adaptation is much less than that
of the FIR filter, while similar performance is achievable.

Several adaptive algorithms have been developed for the
IIR notch filter, such as the sign algorithm (SA) [1,2], the
plain gradient (PG) algorithm [3,4], the normalized gradient
(NG) algorithm [5], the recursive prediction error (RPE) [6]
and other approaches [7,8]. Analyses of these algorithms
have been performed, which mainly involve derivation of
the frequency estimation bias and variance [3,4,9]. On the
other hand, very limited work has been done on the
analysis of the large-signal dynamics of adaptive algorithms
developed so far. Cho and Lee [10] perform the tracking
analysis of the adaptive lattice notch filter for linear chirp

signals (linear variation in signal frequency) and for random
variation in frequency. Xiao et al. [11] analyze the tracking
performance of the IIR adaptive notch filter (IIR-ANF) with
constrained poles and zeros, again for the case of linear
frequency variation. The analysis is restricted to the asymp-
totic response and aims mainly at obtaining the tracking
bias and the mean-square tracking error in the steady state.
Regalia [12] describes the convergence analysis of a lattice-
based IIR adaptive notch filter based on continuous-time
differential equation approximation of the update equation.
Werter [13] uses a similar approach in analyzing the
convergence of a digital filter for frequency shift keying
(FSK) demodulation.

In this paper, a dynamical model for the constrained IIR
notch filter of the memoryless nonlinear gradient (MNG)
type [14] is derived. The MNG adaptation algorithm has
been shown to have better performance than most of the
other algorithms (SA, PG, NG, etc.) at the expense of a
slightly increased computational cost [14]. In this work,
the derivation of the dynamical model is based on decom-
posing the error signal into deterministic and random
components and representing the deterministic part by a
sinusoid with time-varying amplitude. Subsequently, time
averaging is applied to obtain a time-invariant nonlinear
model of the adaptive filter. The model is complicated and
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does not lend itself to analytical treatment. Therefore,
dynamical properties of the filter are studied using gra-
phical methods.

The paper is organized as follows: In Section 2, an
overview of the memoryless nonlinear gradient algorithm
is given. Analysis of the algorithm takes place in Section 3,
where the dynamical model of the adaptive filter is
obtained and verified through numerical simulations.
Convergence analysis of the filter is also discussed in
Section 4 and a general criterion is given for global
stability. In Section 5, the adaptive filter’s response to
sinusoidal variation in signal frequency is investigated.
Finally, some conclusions are drawn in Section 6.

2. Problem formulation

Consider a second order adaptive notch filter of the IIR
type with constrained poles and zeros, which has the
following transfer function from the input signal x(n) to
its output e(n):

HðzÞ ¼
EðzÞ

XðzÞ
¼

1þbz�1þz�2

1þrbz�1þr2z�2
ð1Þ

where b is the parameter to be adapted and r is the pole
contraction factor, which determines the bandwidth of
the filter. At a time instant n the error is computed as

eðnÞ ¼ xðnÞþxðn�2ÞþbðnÞsðnÞ�r2eðn�2Þ ð2Þ

where s(n) is defined as the gradient signal and is given by

sðnÞ ¼ xðn�1Þ�reðn�1Þ: ð3Þ

The memoryless nonlinear gradient algorithm for the
adaptation of the frequency parameter is given by

bðnþ1Þ ¼ bðnÞ�m eðnÞsðnÞ

eþs2ðnÞ
ð4Þ

where e is a small positive number, and bðnÞ ¼�2cos
ðoðnÞÞ, where o(n) is the frequency estimate at time
instant n.

3. Derivation of the dynamical model

Derivation of the model is performed in three steps. In
the first step, the error signal is expressed in terms of
deterministic sinusoidal components with time-varying
amplitudes, and a noise component. The filter equations
are then rewritten in terms of these components. In the
second step, the statistical expectation of the update
Eq. (4) is taken at any time instant n, using an approx-
imate power series expansion for the reciprocal function.
The resulting equations are then averaged in time in the
third step.

3.1. Decomposition of the error signal

Let us assume that the input to the adaptive filter is a
single sinusoid corrupted by white noise

xðnÞ ¼ Acosðno0þjÞþwðnÞ ð5Þ

where A is the amplitude, o0 is the frequency, j is the
phase and w(n) is a white noise sequence, assumed to be
Gaussian. The signal-to-noise ratio (SNR) of the signal in

Eq. (5) is defined as

SNR¼ 10log10
A2

2s2
w

� �
dB ð6Þ

where s2
w is the variance of the noise w(n). Let the error

signal be expressed in the form

eðnÞ ¼ acðnÞcosno0þasðnÞsinno0þnðnÞ ð7Þ

where n(n) is the noise component. Substituting Eqs. (5)
and (7) in Eq. (2), we get

acðnÞcosno0þasðnÞsinno0þnðnÞ

¼

Aðcosjþcosðj�2o0ÞþbðnÞcosðj�o0ÞÞ

�rbðnÞðacðn�1Þcoso0�asðn�1Þsino0Þ

�r2ðacðn�2Þcos2o0�asðn�2Þsin2o0Þ

8><
>:

9>=
>;cosno0

�

Aðsinjþsinðj�2o0ÞþbðnÞsinðj�o0ÞÞ

þrbðnÞðacðn�1Þsino0þasðn�1Þcoso0Þ

�r2ðacðn�2Þsin2o0þasðn�2Þcos2o0Þ

8><
>:

9>=
>;sinno0

þwðnÞþbðnÞwðn�1Þþwðn�2Þ�rbðnÞnðn�1Þ�r2nðn�2Þ

ð8Þ

Eq. (8) can be decomposed into three components by
equating the coefficients of the sinusoidal functions of
time, and also equating the random terms on both sides.
Let the normalized complex amplitude of the error be
defined as

aðnÞ ¼ ejj acðnÞþ jasðnÞ

A
¼ a1ðnÞþ ja2ðnÞ: ð9Þ

The following equations are obtained from Eq. (8) for
the complex amplitude and the noise component of the
error

aðnÞþbðnÞrejo0aðn�1Þþr2ej2o0aðn�2Þ ¼ 1þbðnÞejo0þej2o0

ð10Þ

nðnÞþbðnÞrnðn�1Þþr2nðn�2Þ ¼wðnÞþbðnÞwðn�1Þþwðn�2Þ

ð11Þ

Eqs. (10) and (11) represent an equivalent description of
the filter equation in terms of the newly introduced vari-
ables, the complex amplitude a(n) and the noise component
n(n) of the error signal. Note here that the complex
amplitude itself is a random variable due to the random
nature of the adaptation process. These equations are not
yet in a form suitable for analysis, as they involve random
quantities necessitating the application of statistical aver-
aging. Analysis of the adaptive filter would be simplified to a
large extent if it is assumed that b(n) and the error signal
are uncorrelated. This assumption is approximately valid if
the step size is sufficiently small, thus leading to slow
adaptation of the frequency parameter. Based on this
assumption, the expectation of Eq. (10) gives

aðnÞþbðnÞrejo0aðn�1Þþr2ej2o0aðn�2Þ ¼ 1þbðnÞejo0þej2o0

ð12Þ

where the notation for the complex amplitude is preserved
for simplicity, and bðnÞ ¼ EfbðnÞg. The same assumption
makes it possible to derive the statistical parameters of
the noise component from Eq. (11). The correlations of the
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