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a b s t r a c t

Scale invariance and multifractal analysis constitute paradigms nowadays widely used
for real-world data characterization. In essence, they amount to assuming power law
behaviors of well-chosen multiresolution quantities as functions of the analysis scale. The
exponents of these power laws, the scaling exponents, are then measured and involved in
classical signal processing tasks. Yet, the practical estimation of such exponents implies
the selection of a range of scales where the power law behaviors hold, a difficult task with
yet crucial impact on performance. In the present contribution, a nonparametric bootstrap
based procedure is devised to achieve scaling range automated selection. It is shown to be
effective and relevant in practice. Its performance, benefits and computational costs are
assessed by means of Monte Carlo simulations. It is applied to synthetic multifractal
processes and shown to yield robust and accurate estimation of multifractal parameters,
despite various difficulties such as noise corruption or inter-subject variability. Finally, its
potential is illustrated at work for the analysis of adult heart rate variability on a large
database.

& 2014 Elsevier B.V. All rights reserved.

1. Motivation, context and contribution

1.1. Scale invariance and multifractal analysis

After Mandelbrot's seminal intuitions and contribu-
tions [1,2], the paradigm of scale invariance, also referred

to as scaling, or sometimes fractal, has been used to model
and/or analyze the temporal dynamics of many different
real-world data sets produced by applications of very
different natures, including biomedical [3], internet [4],
physics [5], geophysics [6], finance [7], etc.

Irrespective of the details of the considered applica-
tions, the scale invariance concept amounts to assuming
that no specific scale plays a dominant role in the temporal
dynamics of the data, and that instead time scales, spread
within a large range, are all equally contributing to data
temporal dynamics. For such situations, data analysis
should no longer consist in identifying preferred scales,
but instead in essentially quantifying mechanisms that
relate scales ones to the others. Assessing scale invariance
requires the use of multiresolution quantities, TXða; tÞ, i.e.,
quantities that depend jointly on time (or space) and scale.
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Classical choices are increments, oscillations, or the nowa-
days commonly used wavelet coefficients. In practice, scale
invariance can be evidenced and measured via a power-
law (or algebraic) behavior of the time averages of TXða; tÞ,
with respect to analysis scales a, over a large range of
scales,
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where na denote the number of such TXða; kÞ available
at scale a and the ζðqÞ are usually termed the scaling
exponents. These scaling exponents are classically used to
analyze, characterize and classify signals or images (cf. e.g.,
[8,9]). More recently, multifractal analysis (cf. e.g., [10,11]),
that aims at quantifying the fluctuations of regularity
along time (or space) via the so-called multifractal spec-
trum, has received considerable interest in signal and
image processing and is now considered a standard
analysis tool. A recent and powerful formulation of multi-
fractal analysis relies on a choice of specific multiresolu-
tion quantities, referred to as wavelet leaders, and is
largely used in the sequel.

1.2. Scaling range selection

The practical use of the concept of scale invariance
essentially amounts to estimating the scaling exponents
ζðqÞ. Whatever the estimation procedure, Eq. (1) above
clearly shows that practical estimation strongly relies on
the choice of the range of scales, from now on referred to
as the scaling range, where the power-law behavior holds.
While the theoretical assumption that data X are exactly
self-similar would imply an infinite scaling range (i.e.,
am-0 and aM-þ1), in practice, the scaling range must
often be considered limited, which may stem from many
different causes. At the theoretical level, models used to
describe data often yield asymptotic only power law
behaviors, as in Eq. (1). For instance, multiplicative con-
struction (underlying multifractal models) implies am-0
[10], while Long Memory models implies aM-þ1 [12].
At the practical level, finite scaling range may result from
physical (or physiological) mechanisms whose dynamics
involve a large yet bounded range of scales, while other
competing mechanisms may become dominant at finer or
coarser scales (e.g., dissipation in turbulence [5], beat-to-
beat nature in heart rate variability [13]). Also, data are
digitalized at a given rate, with sampling devices necessa-
rily destroying the power law behaviors at fine scales.
Along the same line, the necessarily finite duration of
recordings is likely to introduce power-law cut-off at
coarse scales. Additionally, noise can be superimposed to
truly scaling data, often leading to a substantial narrowing
of the range of scales where scale invariance can actually
be observed. These different mechanisms thus imply that
scale invariance in practice necessarily holds only within a
potentially large but finite range of scales, bounded below
and above by lower and upper cutoffs. Further, purely from
a performance perspective, estimation of the scaling
exponents ζðqÞ requires a careful selection of the range
of scales, where estimation should be performed. Essen-
tially, that selection is driven by a classical bias-variance

trade-off: A large scaling range yields a low variance at the
risk of bias, due to the often asymptotic nature of scale
invariance; a narrow range, centered over scales where
power law holds, reduces bias but at the price of an
increased variance.

1.3. Related works

Though most practitioners are perfectly aware both of
the crucial impact of scaling range selection on estimation
performance and of the difficulties an objective and auto-
mated selection raise, this issue remains barely addressed.
Essentially, scaling range can be selected either from
fundamental arguments related to the physics (the phy-
siology, etc.) underlying the data at hand (e.g., Kolmogorov
dissipation scale in hydrodynamic turbulence [5], sympa-
thetic–parasympathetic frequency band split in heart rate
variability [14]), or from empirical data analysis. In this
latter perspective, visual inspection and empirical experi-
ence remain the dominant practice amongst practitioners.
This is however obviously a tedious and error prone
procedure, notably for large databases, where each signal
needs to be inspected and where noise level corruption is
likely to vary individually from one signal to another, a
very common observation in biomedical data notably.
Amongst the rare attempts to address the issue in an
automated way, χ2-statistics and F-statistics based proce-
dures were devised and studied in [15] and [16] respec-
tively, to obtain the lower cutoff scale in the analysis of
Gaussian long memory processes. In [17], attempts were
made to relax the Gaussian assumption, relying on the use
of Theil's inequality coefficient. Yet, those approaches do
not straightforwardly nor relevantly extend to multifractal
analysis, toward which we concentrate in the present
contribution, where Gaussian assumptions do not a priori
constitute valid approximations.

1.4. Goals, contributions and outline

In this context, the present contribution aims at pro-
posing and assessing a practically effective procedure for
the automated selection of the scaling range in the general
wavelet leader framework for empirical multifractal ana-
lysis, thus not assuming a priori Gaussianity of the multi-
resolution quantities actually used [8,11]. To that end, a
short introduction for empirical and practical multifractal
analysis is recalled in Section 2. Inspired from the use of
the χ2-statistics in [15] and of the bootstrap framework
developed in [8], a bootstrap-based procedure is motivated
and constructed in Section 3 that permits an automated
scaling range selection. Its performance is assessed by
means of Monte Carlo simulations based on synthetic
multifractal processes according to the protocol detailed
in Section 4.1. Performance is reported and discussed with
respect to optimal mean square error, data length and
trade-off between estimation and analysis, for perfect
multifractal processes in Section 4.2. Performance and
robustness are further evaluated against noise corrupted
multifractal processes (cf. Section 4.3), or multifractal
processes with upper cutoff (cf. Section 4.4), or multifractal
processes suffering from both corruptions at fine and
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