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a b s t r a c t

Objective: This work considers detecting an additive abrupt state change in a tracking
process. It is assumed that the tracking is done by a Kalman filter and that the abrupt
change takes place after the steady-state behavior of the filter is reached.
Result: The effect of the additive change on the innovation process is expressed in closed
form, and we show that the optimal detection method depends on the available
information, contained in the change vector.
Method: We take a Bayesian perspective and show that prior knowledge on the nature of
the change can be used to significantly improve the detection performance.
Result: Specifically, we show that performance of such a detector coincides with that of a
matched filter when the variance (uncertainty) of the change tends to zero, and it
coincides with that of an energy detector when the variance tends to infinity.
Conclusion: Finally we conclude that utilizing the derived closed form improves the
detection performance for abrupt changes for Kalman filter based tracking problems. In
addition, it is concluded that incorporating prior knowledge can improve the detection
performance only if the prior variance is less than a certain amount.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Kalman filter is a strong candidate for tracking
mobile nodes in wireless networks [1]. However, mobile
nodes may suddenly change their movement pattern
while being tracked. The Kalman filter in its basic form
will rarely detect such changes quickly; initially the filter
will treat such events as spurious noise, rather than a
change in the state. The present paper focuses on the
detection of impulsive state changes.

Kalman filtering in the presence of changes to the plant
and observation equations has been studied during the
past decades [2,3] and still attracts interests in new areas
[4,5]. The source of the change can be a multitude of
causes that distorts the expected evolution, and it can

therefore be modeled in different ways (e.g. in state
evolution matrix or an additive change vector). In order
to capture such changes, different solutions are suggested.
In [3], and the references therein, the focus is confined to
various hybrid estimation approaches. Briefly, hybrid esti-
mation is the estimation of the state vector that has both
continuous and discrete components. A wide variety of
solutions have been proposed for these types of problems.
For example, an adaptive neural controller is suggested in
[6] for a nonlinear tracking system and in [7] authors
proposed a fuzzy inference system to distinguish between
noisy and noise-less pixels in order to remove artifact from
images. However, in this work, we confine the study to
classical detectors. Which means that, it is first decided if
there has been a change in the model and then the state is
estimated accordingly. The literature on change detection
is rich, and selected works include [2,8].

In the present paper, and in order to detect sudden
state changes, we choose to modify the standard plant
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equation. Specifically, we add an extra term which can
account for the change. This modification makes it possi-
ble, for example, to recognize the movement of a node
which stops and starts abruptly. Such changing movement
patterns are basic in many widely used movement models,
such as random way point (RWP) [9]. The most common
method for change detection in the Kalman-based tracking
problem is to monitor the energy of the innovation. Once it
goes beyond a certain level, one decides that a change has
happened. The analysis in [2] shows that by incorporating
prior knowledge about the nature of the change, the
detection performance can be improved significantly.

The present paper studies detection of additive change.
The main contributions are as follows. Firstly, we give a
closed form expression for the change signature. That is,
the extra term added to the innovation whenever there is a
change. We also present the convergence properties and
the impulse response of the change signature. Secondly,
assuming impulsive change, where a single realization of a
Gaussian random vector is added to the plant equation, we
present a closed form approximation of the distribution of
the Neyman–Pearson detector. In the asymptotic case,
when the Gaussian random vector has infinite variance,
we show that this detector has no benefit from knowing
that the change is impulsive. Instead, it is better to invoke
a Generalized Likelihood Ratio Test (GLRT), which neglects
the prior information.

The rest of the paper is organized as follows. Section 2
introduces the system model, recalls the standard Kalman
filter equations and derives a closed form expression for
the change signature. In Section 3 the detection problem is
investigated under different levels of prior knowledge
about the change. In Sections 4 and 5, some numerical
examples are studied, and Section 6 concludes the paper.

2. System model

We assume a linear time invariant (LTI) stochastic
state-space model where the state and the observation
evolve according to the following equations:

xkþ1 ¼ FxkþBvk ð1Þ

zk ¼Hxkþwk: ð2Þ

Here, xkfm�1g, zkfp�1g are the state and the observation
vectors respectively, at time instant k. The vectors vkfm0�1g
and wkfp�1g are the process and observation noise respec-
tively, which are assumed to be mutually independent and
white, with covariance matrix Q and R respectively. The
matrices Ffm�mg and Hfp�mg are the state transition matrix
and the observation matrix. The matrix Bfm�m0 g defines
how the process noise influences the state vector. In
conformance with much of the literature, we will use
upper case boldface letters to denote matrices, and lower
case boldface letters to denote column vectors throughout
this paper. Lower case italic letters will denote scalars.

We assumed that a Kalman filter is used to track the
state vector. We recall that the one-step prediction (3), the
innovation (4) and the estimated state (5) can be written

as follows:

x̂kjk�1 ¼ Fx̂k�1jk�1; ð3Þ

ek ¼ zk�Hx̂kjk�1; ð4Þ

x̂kjk ¼ x̂kjk�1þKkek: ð5Þ
Here, the matrix Kk is commonly called the Kalman gain at
time instant k. The state prediction error covariance matrix
Pkjk�1, the Kalman gain, and the covariance matrix of the
innovation Sk are given by

Pkjk�1 ¼ FPk�1jk�1F
T þBQBT ;

Sk ¼HPkjk�1H
T þR; ð6Þ

Kk ¼ Pkjk�1H
TS�1

k ;

The Kalman filter is the Minimum Mean Square Error
(MMSE) state estimator for this tracking problem, pro-
vided that the noise sources are Gaussian. If the noise
sources are non-Gaussian, but have known first and
second moments, the Kalman filter corresponds to the
linear MMSE estimator.1 The main focus of this work is the
case when an abrupt change is added to the state equation.
Therefore we rewrite the state evolution equation as

xkþ1 ¼ Fxkþvkþdk;j; ð7Þ
where dk;j is a vector called the dynamic profile of the
change at time instant k while the change starts at time
instant j. This paper considers the problem of detecting
the abrupt additive change in a state space setting under
different levels of the available prior knowledge about d.

2.1. Change signature

Since any deviation from the plant equation in (1)
manifests itself by changing the statistics of the innovation
process, change detection methods take e as the observa-
tion vector. Therefore finding the relationship between e
and the dynamic profile d is of pivotal interest. To that end,
we assume that (i) the Kalman filter operates in a steady
state condition where Kk ¼K1 ¼K, and (ii) the additive
change starts at time j and the plant equation follows (7).
Under these assumptions it is straightforward to verify
that the state evolves after the change as

xk ¼ x0
kþak;j

ak;j ¼ ∑
k� j

i ¼ 1
Fi�1dk� i;j; ð8Þ

here, the quantities with the exponent 0 correspond to the
system without the change where the plant equation still
follows (1). Thus in (8), x0

k represents the state vector at
time instant k if there was no additive change at time
instant j. We now claim that the estimated state will have
the following form:

x̂kjk ¼ x̂0
kjkþbk;j: ð9Þ

1 Among all estimators which are linear (affine) in the observations,
the linear MMSE estimator obtains the smallest MSE.
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