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a b s t r a c t

For compressed sensing over arbitrarily connected networks, we consider the problem of
estimating underlying sparse signals in a distributed manner. We introduce a new signal
model that helps to describe inter-signal correlation among connected nodes. Based on
this signal model along with a brief survey of existing greedy algorithms, we develop
distributed greedy algorithms with low communication overhead. Incorporating appro-
priate modifications, we design two new distributed algorithms where the local
algorithms are based on appropriately modified existing orthogonal matching pursuit
and subspace pursuit. Further, by combining advantages of these two local algorithms, we
design a new greedy algorithm that is well suited for a distributed scenario. By extensive
simulations we demonstrate that the new algorithms in a sparsely connected network
provide good performance, close to the performance of a centralized greedy solution.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Compressed sensing (CS) [1,2] refers to an under-sampling
problem, where few samples of an inherently sparse signal
are collected via a linear measurement matrix with the
objective of reconstructing the full sparse signal from these
few samples. Considering the fact that sparsity is ubiquitous
in nature, CS has many potential applications. In the literature,
the task of developing CS reconstruction algorithms has
presumably been considered for a set-up where the samples
are acquired by using a single sensor. In the CS community,
we note that there is an increasing effort to consider a
multiple-sensor setup.

For a multiple-sensor setup, an interesting case is
a distributed setup where several CS-based sensors are
connected through a distributed (decentralized) network.
Such a setup is useful in a wide range of applications,
for example in distributed sensor perception [3] and

distributed spectrum estimation [4–6]. Considering a
camera sensor network, we can envisage a scheme where
a set of measurement samples (i.e., CS samples of image
signals) from different angles at different positions are
acquired. Instead of reconstructing the underlying signals
from the corresponding samples independently, one could
potentially improve the quality of the reconstructed sig-
nals by taking into account all the measurement samples.
This is possible by exchanging information over the (con-
nected) network. We refer to this problem as distributed
CS (DCS) problem, where the sensor nodes are connected
with an arbitrary network topology. In the DCS problem,
the sparse signals acquired at the sensors are correlated. If
all sensors transmit their measured samples to a common
centralized point, the problem can be solved by a centra-
lized algorithm. For such a setup, we have recently devel-
oped joint greedy pursuit reconstruction algorithms in [7].
In the literature, we find several other attempts for
centralized solutions with various model assumptions
[8,9]. Additionally the works based on simultaneous sparse
approximation (SSA) [10,11] and multiple measurement
vector (MMV) [12,13] problems, for example simultaneous
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orthogonal matching pursuit (SOMP) algorithm [14], can
be considered to be applied for a centralized (or joint) CS
setup. The paper [15] provides a good overview comparing
several centralized algorithms.

When a centralized setup is not possible for the DCS
problem, a distributed CS setup may be a good choice. For
the distributed CS setup, we notice some recent attempts
to design convex relaxation algorithms [4–6,16]. A non-
convex algorithmic approach which attempts to minimize
an ℓq minimization problem distributively is presented in [17].
While the convex relaxation algorithms are theoretically
elegant and provide good practical performance for low
dimensional problems, their use for high dimensional pro-
blems are limited due to their high complexity (here, a high
dimensional problem refers to the case where the dimensions
of underlying signals are high). Typically the complexity of a
convex relaxation algorithm scales with signal dimension N
cubically as OðN3Þ [18]. Naturally, designing computationally
simple greedy pursuit (GP) (also called greedy search) algo-
rithms is an attractive alternative. In general, a GP algorithm
uses computationally simple detection and estimation tech-
niques iteratively and hence they are computationally efficient
for higher dimensional problems. Typically the complexity for
standard GP algorithms is OðN log NÞ [19]. While there exist
several centralized GP algorithms for the DCS problem, such
as [7,14,20,13], there is so far few attempts for solving the DCS
problem based on distributed GP algorithms. We first
addressed this problem in [21] and we found another recent
contribution in [22].

In this paper, we develop GP algorithms for solving the
DCS problem where each node reconstructs a signal which
is correlated with signals stemming from other sensor
nodes. We refer to the new algorithms as distributed GP
(DiGP) since there is no centralized node. For the correla-
tions in the DCS problem considered here, we first intro-
duce a mixed support-set signal model [7], where the
correlations are modeled as overlap in the support-set of
the signals at different nodes. We claim that this new
signal model is less restrictive compared to previous signal
models [9,12,23] in the literature. Based on this signal
model, we develop three DiGP algorithms. Two of the DiGP
algorithms are built upon existing GP algorithms by
introducing appropriate modifications. The existing GP
algorithms which we modify are orthogonal matching
pursuit (OMP) [24] and subspace pursuit (SP) [25]. We
also develop a new GP algorithm which we call FROGS, by
combining strengths from both OMP and SP, and then use
FROGS to develop the third DiGP algorithm. Based on
surveys on DCS convex and GP algorithms, and by intro-
duction of a new signal model, the contributions of this
paper are:

� Development of the new GP algorithm FROGS.
� Development of three new distributed greedy pursuit

algorithms.

We provide several results through simulations: aver-
age number of algorithm iterations, algorithm execution
times, algorithm performance over iterations, algorithm
performance over several kinds of networks. Inspiration

for the work in this paper came since the authors were
working with improving the performance of GP algorithm
for standard CS (i.e., [19]) and from work with the
centralized joint sparse signal recovery [7]. Importantly
we mention that correlation structure in the new signal
model is realized via a generalization of existing models
used in sparse signal recovery and jointly sparse signal
recovery schemes. In the new signal model used for DCS,
all signals observed at all sensors have a common sparsity
pattern along with each signal at each node has its own
private sparsity pattern.

The remaining parts of the paper are arranged as
follows: In Section 1.1, we present the general DCS
problem and in Sections 1.2 and 1.3 we provide literature
surveys for convex and greedy algorithms, respectively.
We introduce the new signal model for distributed CS in
Section 2; the section also includes a structured approach
for describing the quality of connectivity in a distributed
network. In Section 3, we introduce the new stand-alone
GP algorithm. In Section 4, we introduce the concept of
DiGP and develop the three DiGP algorithms. In Section 5,
we evaluate the average number of iterations for the
proposed algorithms. We end the paper with experimental
evaluations in Section 6.

Notations: Let a matrix be denoted by a upper-case
bold-face letter (i.e., AARM�N) and a vector by a lower-
case bold-face letter (i.e., xARN�1). T is the support-set of
x, which is defined in the next section. We also denote
T ¼ f1;2;…;Ng\T as the complement to T where \ is the
set-minus operator. AT is the sub-matrix consisting of the
columns in A corresponding to the elements in the set T .
Similarly xT is a vector formed by the components of x
that are indexed by T . We let ð�Þ† and ð�ÞT denote pseudo-
inverse and transpose of a matrix, respectively. We use J � J
to denote the l2 norm of a vector.

1.1. Distributed compressed sensing problem

For the distributed CS (DCS) problem, considering the l-
th sensor, the sparse signal xlARN is measured as

yl ¼Alxlþwl; 8 lAf1;2;…; Lg; ð1Þ
where ylARM is a measurement vector, AlARM�N is a
measurement matrix, and wlARM is the measurement
error. In this setup MoN and hence the system is under-
determined. Typically Al and wl are independent across l.
The signal vector xl ¼ ½xlð1Þ xlð2Þ;…� has Kl non-zero com-
ponents with a set of indices T l ¼ fi: xlðiÞa0g. T l is referred
to as the support-set of xl with cardinality jT lj ¼ Kl. The
DCS reconstruction problem strives to reconstruct xl for all
l by exploiting some shared structure (correlation) defined
by the underlying signal model and by exchanging some
information between the nodes (sensors).

Based on (1), we will now provide a literature survey.
In this literature survey, we endeavor to distinguish
between a distributed and centralized algorithm and also
between the distributed and centralized CS problem. A
solution algorithm can be either distributed or centralized
independent of whether the underlying signals to be
estimated are correlated or not. For example, the standard,
one-sensor, CS problem can be solved by a distributed
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