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a b s t r a c t

Data compression techniques mainly consist of two operations, data compression itself

and a consequent data de-compression. In real time, the compressor and de-compressor

are causal and, at a given time, may process (or ‘remember’) only a fragment of the

input signal. In the latter case, we say that such a filter has a finite memory. We study a

new technique for optimal real-time data compression. Our approach is based

on a specific formulation of two related problems so that one problem is stated for

data compression and another one for data de-compression. A compressor and

de-compressor satisfying conditions of causality and memory are represented by matrices

with special forms, A and B, respectively. A technique for the solution of the problems is

developed on the basis of a reduction of minimization problems, in terms of matrices A and

B, to problems in terms of specific blocks of A and B. The solutions represent data

compressor and data de-compressor in terms of blocks of those matrices that minimize

associated error criteria. The analysis of the associated errors is also provided.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

A study of data compression methods is motivated by
the necessity to reduce expenditures incurred with the
transmission, processing and storage of large data arrays
[1,2]. Such methods have also been applied successfully to
the solution of problems related, e.g., to clustering [3],
feature selection [4,5], forecasting [6,7] and estimating
the medium from transmission data [8].

Data compression techniques are often performed on
the basis of the Karhunen–Lo�eve transform (KLT),1 which
is closely related to the principal component analysis
(PCA). A basic theory for the KLT-PCA can be found, for
example, in [1,4,9]. In short, the KLT-PCA produces a linear
operator of a given rank that minimizes an associated
error over all linear operators of the same rank. In a

standard KLT–PCA application (e.g., presented in [4]), an
observable signal and a reference signal are the same. In
other words, the standard KLT–PCA provides data com-
pression only and no noise filtering.

Scharf [1,10] presented an extension of the PCA–KLT2

for the case when an observable signal y and a reference
signal x are different and no explicit analytic representa-
tion of y in terms of x is known. In particular, y can be a
noisy version of x. The method [1,10] assumes that
covariance matrix Eyy, formed from y, is nonsingular.
Yamashita and Ogawa [11] studied and justified a version
of the PCA–KLT for the case where the covariance matrix
Eyy may be singular and y¼ xþw with w an additive
noise. Hua and Liu [12] considered an extension of the
PCA–KLT to the case when Eyy is singular, and y and x are
as in [1,10]. Torokhti and Friedland [15] studied a
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2 The list of references related to the PCA–KLT is very long. For

example, a Google search for ‘Karhunen-Lo�eve transform and principal

component analysis’ gives 9230 items. Here, we mention only the most
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weighted version of the PCA–KLT. Torokhti and Howlett
[16,17] extended the PCA–KLT to the case of optimal non-
linear data compression. Torokhti and Manton [18]
further advanced results in [15–17] to the so-called
generic weighted filtering of stochastic signals. Advanced
computational aspects of the PCA–KLT were provided, in
particular, by Hua, Nikpour and Stoica [2], Hua and
Nikpour [19], Stoica and Viberg [20], and Zhang and
Golub [21]. Other relevant references can be found, e.g. in
the bibliographies of the books by Scharf [1], and Torokhti
and Howlett [9].

While the topics of data compression have been
intensively studied (in particular, in the references
mentioned above), a number of related fundamental
questions remain open. One of them concerns real-time
data processing. In this paper, the real-time aspect of the
data compression problem is the dominant motivation for
considering specific restrictions associated with causality
and memory. Similar observations motivated studies in
works by Gastpar, Dragotti and Vetterli [13], Roy and
Vetterli [14], Fomin and Ruzhansky [22], Torokhti and
Howlett [23], and Howlett, Torokhti and Pearce [24]. In
[13,14], distributed signal estimation has been studied for
the case of multiple sensors, each observing only a part of
the input signal. In [13,14], the statement of the data
compression problem and associated assumptions are
different from those considered below. In [22–24], a
causal Weiner-like filtering with memory has been
considered, but not in the context of data compression.

We note that conditions of causality and memory make
the problem very specific and difficult. In Section 3.2, we
provide a new approach to the problem solution and
give an analysis of the associated error. In more detail,
motivations to consider the problem are as follows.

First motivation: causality and memory. Data compres-
sion techniques mainly consist of two operations, data
compression itself and a subsequent data de-compression
(or reconstruction). In real time, the compressor and
de-compressor are causal and may be performed with a
memory.

A causality constraint follows from the observation
that in practice, the present value of the output of a filter 3

is not affected by future values of the input [25]. To
determine the output signal at time tk, with k=1,y,m, the

causal filter should ‘remember’ the input signal up to time
tk, i.e., at times tk, tk�1, y, t1. Such a situation is typical,
for example, in a medical computer diagnostic [5].

A memory constraint is motivated as follows. The
output of the compressor and/or de-compressor at time
tk with k=0,1,y,m, may only be determined from a
‘fragment’ of the input defined at times tk,tk�1, . . . ,tk�ðZk�1Þ

with Zk ¼ 1, . . . ,k. In other words, compressor and de-
compressor should ‘remember’ that fragment of the input.
The ‘length’ of the fragment for a given k, i.e. the number
Zk, is called a local memory. The local memory could be
different for different k, therefore, we also say that Zk is a
local variable memory. A collection of the local memories,

{q1,y, qm}, is called the variable finite memory or simply
variable memory. A formalization of these concepts is
given in Section 3.1. Matrices that form filter models with
a variable memory possess special structure. Some related
examples are given in Section 3.1.

Thus, our first motivation, to consider the problem in
the form presented in Section 2.4 below, comes from the
observation that the compressor and de-compressor, used
in real time, should be causal with variable finite memory.

Second motivation: specific formulation of the problem. In
reality, the compression and de-compression are sepa-
rated in time. Therefore, it is natural to pose optimization
problems for them separately, one specific problem for
each operation, compression and de-compression. Asso-
ciated optimization criteria could be formulated in many
ways. Some of them are discussed in Appendix A, and we
show that those criteria lead to significant difficulties. To
avoid the difficulties considered in Appendix A, a new
approach to the solution of the data compression problem
is presented here. The approach is based on a specific
formulation of two related problems given in Section 2.
Solutions of those problems represent an associated
optimal compressor and optimal de-compressor, respec-
tively. It is shown in Section 3.1 that the optimal
compressor and de-compressor satisfying conditions of
causality and variable finite memory must have special
forms. This implies that signals processed by these
operators should be presented in special forms as well.
In Sections 3.1 and 3.2 this issue is discussed in detail.

Next, traditionally, the data compression problem is
studied in terms of linear operators, mainly due to the
simplicity of their implementation. See, for example,
[1–4] and [10–15] and references herein. Here, we extend
the approaches of linear data compression proposed in
[1–4] and [10–15]. A case of non-linear compression and
de-compression with causality and memory is more
complicated, and it can be studied on the basis of results
obtained below combined, e.g., with the approaches to
optimal non-linear filtering presented in [9,16–18,24].

2. Basic idea and statement of the problem

2.1. Informal statement of problem

In an informal way, the data compression problem we
consider can be expressed as follows.

Let ðO,S,mÞ be a probability space, where O¼ fog is the
set of outcomes, S a s-field of measurable subsets in O
and m : S-½0,1� an associated probability measure on S
with mðOÞ ¼ 1. Let y 2 L2ðO,Rn

Þ be observable data and x 2
L2ðO,Rm

Þ be a reference signal that is to be estimated from
y in such a way that

(i) first, data y should be compressed to a shorter vector
z 2 L2ðO,Rr

Þ
4 with rominfm,ng,

(ii) then z should be decompressed (reconstructed) to a
signal ~x 2 L2ðO,Rm

Þ so that ~x is ‘close’ to x in some
appropriate sense, and
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3 When a context is clear, we use the term ‘filter’ for both

compressor and de-compressor. 4 Components of z are often called principal components [4].
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