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a b s t r a c t

Image denoising is a fundamental problem in image processing. This paper proposes a

nonmonotone adaptive gradient method (NAGM) for impulse noise removal. The NAGM

is a low-complexity method and its global convergence can be established. Numerical

results illustrate the efficiency of the NAGM and indicate that such a nonmonotone

method is more suitable to solve some large-scale signal processing problems.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Images are often corrupted by impulse noise in which
the noisy pixels are assumed to be randomly distributed in
the image. An important characteristic of impulse noise is
that only part of the pixels are contaminated by the noise
and the rest are free. There are two common types of
impulse noise: one is the salt-and-pepper noise and the
other is the random-valued impulse noise. For images
corrupted by salt-and-pepper noise (respectively, random-
valued noise), the noisy pixels can take only the maximal
and minimal pixel values (respectively, any random value)
in the dynamic. The goal of noise removal is to suppress the
noise while preserving image details. The median filter was

once the main method for removing impulse noise [1]. Over
the years, several improved methods for impulse noise
removal with different noise detectors were proposed, for
example, the adaptive median filter (AMF) [2] and adaptive
center-weighted median filter (ACWMF) [3], etc. These
nonlinear filters can detect the noisy pixels even at a high
noise level. However, they cannot restore such pixels
satisfactorily because they do not take into account local
image features such as the possible presence of edges.
Hence details and edges are not recovered well, especially
when the noise level is high.

Recently, a two-phase method was proposed in [4,5].
The first phase is the detection of the noise pixels by using
the adaptive median filter (AMF) [2] for salt-and-pepper
noise while for random-valued noise, it is accomplished
by using the adaptive center-weighted median filter
(ACWMF) [3]. Let the true image denoted by X, and
A¼ f1,2,3, . . . ,Mg � f1,2,3, . . . ,Ng be the index set of X. Let
N � A denote the set of indices of the noise pixels
detected in the first phase. Let V i,j denote the set of the
four closest neighbors of the pixel at position ði,jÞ 2 A and
yi,j be the observed pixel value of the image at position
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(i, j), and u¼ ½ui,j�ði,jÞ2N denote a column vector of length c

ordered lexicographically. Here c is the number of
elements of N . Let ja be an edge-preserving functional
and set S1

i,j ¼
P
ðm,nÞ2Vi,j\Njaðui,j�ym,nÞ, S2

i,j ¼
P
ðm,nÞ2Vi,j\Nja

ðui,j�um,nÞ. Then, the second phase is the recovering of the
noise pixels by minimizing the following functional:

GaðuÞ ¼
X
ði,jÞ2N
jui,j�yi,jjþ

t
2

X
ði,jÞ2N
ð2 � S1

i,jþS2
i,jÞ, ð1Þ

where first summation is a data-fitting term and the
second summation is a regularization term, and t40 is a
parameter. An example of edge-preserving potential
function is jaðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
aþt2
p

,a40, which corresponds to
the popular smoothly approximated total variation (TV)
regularization term. The explanation of the extra factor
‘‘2’’ in the second summation in (1) can be seen in [7].

The two-phase method can restore large patches of
noisy pixels because it introduces pertinent prior in-
formation via the regularization term. However, the
functional to be minimized in the second phase is
nonsmooth, and it is costly to get the minimizer. The
relaxation method in [4,5] is convergent but slow. To
improve the computational efficiency, it was proposed in
[6] to drop the nonsmooth data-fitting term, as it is not
needed in the 2-phase method, where only noisy pixels
are restored in the minimization. Therefore, there are a lot
of optimization methods can be extended to minimize
smooth edge-preserving regularization (EPR) functional. A
Newton method was proposed in [6], a quasi-Newton
method was presented in [7] and a class of conjugate
gradient methods were considered in [7,8] to minimize
the following smooth functional:

GaðuÞ ¼
X
ði,jÞ2N
ð2 � S1

i,jþS2
i,jÞ: ð2Þ

This paper proposes an effective nonmonotone method
to solve the above minimization problem. Section 2
describes our globally convergent nonmonotone adaptive
gradient method (NAGM) in detail. Section 3 gives
numerical results to illustrate the convergence and
efficiency of the proposed method. Finally we have a
conclusion section.

2. Adaptive gradient method

Given a starting point u0 and using the notation
gk ¼rf ðukÞ, the gradient methods for minu2Rn f ðuÞ are
defined by the iteration uk+1=uk�tkgk, k=0,1,y, where
the stepsize tk40 is determined through an appropriate
selection rule. In the classical steepest descent (SD)
method, the stepsize tk40 is obtained by minimizing the
function f(u) along the ray fuk�tgk : t40g. In 1988, Barzilai
and Borwein (BB) [9] developed an ingenious gradient
method in which stepsize tkðk40Þ is determined by

tBB1

k ¼
sT

k�1sk�1

yT
k�1sk�1

or tBB2

k ¼
yT

k�1sk�1

yT
k�1yk�1

,

where sk�1=uk�uk�1 and yk�1=gk�gk�1. In fact, tk is
derived from an approximately secant equation:
tBB1

k ¼ argmint2RJð1=tÞsk�1�yk�1J2 and tBB2

k ¼ argmint2R

Jsk�1�tyk�1J2. It is clear that tBB1

k ZtBB2

k . The BB method

performs much better than the SD method in practice.
Especially, when the objective function is convex quadratic
function and n=2, the BB method converges R-super-
linearly to the global minimizer [9]. For any dimension
convex quadratic function, it is still globally convergent
[10] but the convergence is R-linear [11]. In the last years,
stepsize selection rules in gradient methods have received
an increasing interest from both the theoretical and the
practical point of view [12,13]. In [12], Zhou et al. proposed
a gradient method with an adaptive stepsize:

tk ¼
tBB2

k if
tBB2

k

tBB1

k

ok,

tBB1

k otherwise,

8>><
>>: ð3Þ

where k 2 ð0,1Þ is a constant. They interpret (3) as follows:
If the previous iterate uk is a bad point (e.g. when
tBB2

k =tBB1

k o0:15) for the minimal gradient method, and so
that there is little reduction in JgðuÞJ2, choose the smaller
stepsize tBB2

k ; otherwise, choose the larger stepsize tBB1

k .
Their numerical results show that this adaptive stepsize
can improve its practical performance.

In this paper, we consider a new gradient method
which adaptively choose a small stepsize or a large
stepsize at each iteration such as

tk ¼
tBB1

k if k is odd or
sT

k�1yk�1

Jsk�1JJyk�1J
4b,

tBB2

k otherwise,

8><
>: ð4Þ

where bo1 is close to 1. It is easy to derive that
tBB2

k =tBB1

k ¼ ðsT
k�1yk�1=Jsk�1JJyk�1JÞ

2. Even then, the switch
condition in (4) is different to that in (3). And we can
interpret Eq. (4) in a different viewpoint. Let Hk ¼r

2f ðukÞ.
We know that sT

k�1yk�1=Jsk�1JJyk�1J� gT
k Hkgk=

JgkJ � JHkgkJ. When gT
k Hkgk=JgkJ � JHkgkJ� 1, the gradient

gk can be regarded as a good approximation of an
eigenvector of the Hessian matrix Hk. In this case, it is
reasonable to choose tk ¼ tBB1

k since 1=tBB1

k is a good
approximation to the corresponding eigenvalue. In addi-
tion, this adaptive gradient method might overcome the
drawbacks of the SD method in an efficient manner. Here
the small stepsize tBB2

k is primarily used to induce a
favorable descent direction for the next iteration, while
the large stepsize tBB1

k is primarily used to produce a
sufficient reduction (see for instance [12] for more
mathematical analysis of this problem).

In order to ensure global convergence for the BB-like
method, it is necessary to modify the BB-like method
by incorporating some sort of line search [13,14]. In [14],
Dai and Fletcher proposed an adaptive nonmonotone
line search. The numerical results reported in [14]
show that this kind of line search is particularly
suitable for the BB method in the nonquadratic case. The
method has a reference function value fr, and
each iteration must improve on the reference value such
that

f ðukþldkÞr frþylgT
k dk, ð5Þ

where dk=�tk gk denotes the current search direction,
y 2 ð0,1Þ is a given constant and l40 is the tried stepsize.
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