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a b s t r a c t

Probabilistic finite state automata (PFSA) are often constructed from symbol strings that,
in turn, are generated by partitioning time series of sensor signals. This paper focuses on a
special class of PFSA, which captures finite history of the symbol strings; these PFSA, called
D-Markov machines, have a simple algebraic structure and are computationally efficient
to construct and implement. The procedure of PFSA construction is based on (i) state
splitting that generates symbol blocks of different lengths based on their information
contents; and (ii) state merging that assimilates histories by combining two or more
symbol blocks without any significant loss of the embedded information. A metric on the
probability distribution of symbol blocks is introduced for trade-off between loss of
information (e.g., entropy rate) and the number of PFSA states. The underlying algorithms
have been validated with three test examples. While the first and second examples
elucidate the key concepts and the pertinent numerical steps, the third example presents
the results of analysis of time series data, generated from laboratory experimentation, for
detection of fatigue crack damage in a polycrystalline alloy.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Symbolic time series analysis (STSA) [1,2] is built upon the
concept of symbolic dynamics [3] that deals with discretiza-
tion of dynamical systems in both space and time. The notion
of STSA has led to the development of a pattern recognition
tool, in which a time series of sensor signals is represented as

a symbol sequence that, in turn, leads to the construction of
probabilistic finite state automata (PFSA) [4–9]. The paradigm
of PFSA has been used for behavior modeling of dynamical
systems and its applications are widespread in various
fields including computational linguistics [10] and speech
recognition [11]. Since PFSA models are capable of efficiently
compressing the information embedded in sensor time series
[12,13], these models could enhance the performance and
execution speed of information fusion [14] and information
source localization [15] that are often computation-intensive.
Rao et al. [16], Jin et al. [17] and Bahrampour et al. [18] have
shown that the performance of this PFSA-based tool as a
feature extractor for statistical pattern recognition is compar-
able (and often superior) to that of other existing techniques
(e.g., Bayesian filters, Artificial Neural Networks, and Principal
Component Analysis [19]).

Statistical patterns of slowly evolving dynamical beha-
vior in physical processes can be identified from sensor
time series data [1]. Often the changes in these statistical
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patterns occur over a slow time scale with respect to the
fast time scale of process dynamics. In this context, the
concept of two time scales is succinctly presented below.

Definition 1.1 (Fast scale). The fast scale is defined to be a
time scale over which the statistical properties of the
process dynamics are assumed to remain invariant, i.e.,
the process is assumed to have statistically stationary
dynamics at the fast scale.

Definition 1.2 (Slow scale). The slow scale is defined to be
a time scale over which the statistical properties of the
process dynamics may gradually evolve, i.e., the process
may exhibit statistically non-stationary dynamics at the
slow scale.

In view of Definition 1.1, statistical variations in the inter-
nal dynamics of the process are assumed to be negligible at
the fast scale. Thus, sensor time series data are acquired
based on the assumption of statistical stationarity at the fast
scale. In view of Definition 1.2, an observable non-stationary
behavior could be associated with the gradual evolution of
anomalies (i.e., deviations from the nominal behavior) in the
process at the slow scale. In general, a long time span at the
fast scale is a tiny (i.e., several orders of magnitude smaller)
interval at the slow scale. A pictorial view of the two-time-
scales operation in Fig. 1 illustrates the concept.

The major steps for construction of PFSA from sensor
signal outputs (e.g., time series) of a dynamical system are

as follows:

(1) Coarse-graining of time series to convert the scalar or
vector-valued data into symbol strings, where the
symbols are drawn from a (finite) alphabet [20].

(2) Encoding of probabilistic state machines from the
symbol strings [12,21].

In the process of symbol generation, the space of time
series is partitioned into finitely many mutually exclusive and
exhaustive cells, each corresponding to a symbol belonging to
a (finite) alphabet. As a trajectory of the dynamical system
passes through or touches various cells of the partition, the
symbol assigned to the cell is inserted in the symbol string. In
this way, a time series corresponding to a trajectory is
converted into a symbol string. Fig. 2 illustrates the concept
of constructing finite state automata (FSA) from time series,
which provides the algebraic structure of probabilistic finite
state automata (PFSA).

The next step is to construct probabilistic finite state
automata (PFSA) from the symbol strings to encode their
statistical characteristics so that the dynamical system's
behavior is captured by the patterns generated by the PFSA
in a compact form. The algebraic structure of PFSA (i.e., the
underlying FSA) consists of a finite set of states that are
interconnected by transitions [22–24], where each transi-
tion corresponds to a symbol in the (finite) alphabet.
At each step, the automaton moves from one state to
another (possibly including self loops) via these transi-
tions, and thus generates a corresponding block of symbols
so that the probability distributions over the set of all
possible strings defined over the alphabet are represented
in the space of PFSA. The advantage of such a representa-
tion is that the PFSA structure is simple enough to be
encoded as it is characterized by the set of states, the
transitions (i.e., exactly one transition for each symbol
generated at a state), and the transition's probability of
occurrence.

D-Markov machines are models of probabilistic lan-
guages where the future symbol is causally dependent
on the (most recently generated) finite set of (at most)
D symbols and form a proper subclass of PFSA with
applications in various fields of research such as anomaly
detection [12] and robot motion classification [25]. TheFig. 1. Underlying concept of fast and slow time scales.
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Fig. 2. Construction of probabilistic finite state automata (PFSA).
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