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We describe a distributed adaptive algorithm to estimate the eigenvectors corresponding
to the Q largest or smallest eigenvalues of the network-wide sensor signal covariance
matrix in a wireless sensor network. The proposed algorithm recursively updates the
eigenvector estimates without explicitly constructing the full covariance matrix that
defines them, i.e., without centralizing all the raw sensor signal observations. By only
sharing fused Q-dimensional observations, each node obtains estimates of (a) the node-
specific entries of the Q covariance matrix eigenvectors, and (b) Q-dimensional projections
of the full set of sensor signal observations onto the Q eigenvectors. We also explain
how the latter can be used for, e.g., compression and reconstruction of the sensor signal
observations based on principal component analysis (PCA), in which each node acts as a
data sink. We describe a version of the algorithm for fully-connected networks, as well as
for partially-connected networks. In the latter case, we assume that the network has been
pruned to a tree topology to avoid cycles in the network. We provide convergence proofs,
as well as numerical simulations to demonstrate the convergence and optimality of the

algorithm.
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1. Introduction
1.1. Context and contribution

The eigenvectors of a signal covariance matrix play an
important role in many algorithms and applications, e.g.,
in principal component analysis (PCA) [2,3], the Karhunen-
Loeve transform (KLT) [4], steering vector or direction-
of-arrival estimation [5,6], total least squares (TLS) estima-
tion [7], subspace estimation, etc. In this paper, we address
the estimation of the eigenvectors of the network-wide
sensor signal covariance matrix in a wireless sensor net-
work (WSN). Assume node k collects observations of a
node-specific stochastic vector y, and let y be the vector in
which all y;'s are stacked. Our goal is then to adaptively
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estimate the Q eigenvectors corresponding to the Q largest
or smallest eigenvalues of the network-wide covariance
matrix defined by y. In principle, this would require each
node to transmit its raw sensor signal observations to a
central node or fusion center (FC), where the network-
wide covariance matrix can be constructed, after which an
eigenvalue decomposition (EVD) can be performed. How-
ever, centralizing all these raw observations may require
too much communication bandwidth, in particular if
observations are collected at a high sampling rate, as in
audio or video applications. Furthermore, if y has a large
dimension, the computation of the EVD of the network-
wide covariance matrix may require a significant amount
of computational power at the FC since the computational
complexity of the EVD scales cubically with the matrix
dimension.

To reduce the communication and computation cost,
we propose a distributed adaptive algorithm to estimate Q
eigenvectors without explicitly constructing the network-
wide covariance matrix that actually defines them, i.e.,
without the need to centralize the sensor signal observa-
tions in an FC. Instead of transmitting all its raw sensor
signal observations, each node only transmits fused/com-
pressed Q-dimensional observations, while estimating the
node-specific entries of the eigenvector, corresponding to
the part of y that is observed at the node. We refer to the
algorithm as the distribute adaptive covariance matrix
eigenvector estimation (DACMEE) algorithm.

The DACMEE algorithm also provides each node with
the Q-dimensional projections of the full set of sensor
signal observations onto the Q estimated eigenvectors.
This allows each node to compute a PCA- or KLT-based
approximation of the observations of the full network-wide
vector y.

We will describe two versions of the DACMEE algo-
rithm, i.e., a version for fully-connected networks in which
a signal broadcast by any node can be collected by every
other node, as well as a version for partially-connected
networks in which a node can only communicate with
a subset of the other nodes. We then assume that the
partially-connected network is pruned to a tree topology.
This guarantees that there are no cycles in the network
graph, since these harm the algorithm dynamics.

1.2. Relation to prior work

Two different cases have been considered in the litera-
ture where either (a) the nodes collect observations of the
full vector y, or (b) each node collects observations of a
node-specific subset of the entries of y (as it is the case in
this paper). Let Y denote an M x N observation matrix
containing N observations of an M-dimensional stochastic
vector y, then (a) corresponds to the case where the
columns of Y are distributed over the different nodes,
whereas in case (b), the rows of Y are distributed over
the nodes. The techniques to construct the corresponding
covariance matrix and/or estimate its eigenvectors are
very different for the two cases. It is noted that a similar
distinction exists in the literature in the context of dis-
tributed least-squares estimation, see, e.g., [8,9], where
each node collects observations of the full y to estimate a

common parameter vector, versus [10,11], where each
node only observes a node-specific subset of the entries
of y to compute an estimator that relies on the full
network-wide covariance matrix.

Case (a) is addressed in [12-14] for ad hoc topologies
and in [15] for a fully-connected topology. In [12], the
network-wide covariance matrix is first estimated by
means of a consensus averaging (CA) algorithm that
exchanges M x M matrices in each iteration, after which
each node performs a local EVD. If only a subset of the
eigenvectors' is needed, one can use distributed optimiza-
tion techniques in which only M-dimensional vectors are
exchanged between nodes [13,14]. In [15], a distributed QR
decomposition is performed in a fully-connected network,
followed by an EVD.

Case (b) is actually more challenging, as it requires to
estimate the cross-correlation between sensor signals of
different nodes. This requires the exchange of (compressed)
sensor signal observations, resulting in a higher commu-
nication cost compared to case (a), in particular for applica-
tions with a high sampling rate. Case (b) is tackled in
[6,16,17] (only for the case of principal eigenvectors) for
networks with an ad hoc topology. These algorithms rely on
Oja’s learning rule in combination with nested CA itera-
tions, hence operating at two time scales. The inner loop
performs many CA iterations with a full reset for each outer
loop iteration. Since the outer loop runs with the same rate
as the sampling rate of y, and since each iteration of the
inner loop also requires data exchange, each node actually
transmits more data than actually collected by its sensors.
Furthermore, since the convergence time of the inner CA
loop increases with the network size, the per-node com-
munication cost also grows with the network size.

The algorithm proposed in this paper only works in
networks with a fully connected or a tree topology, but it
does not require nested loops, and its per-node commu-
nication cost is independent of the network size. The
algorithm does not explicitly rely on Oja's stochastic learn-
ing rule (although this can also be included), but it explicitly
computes compressed sensor signal covariance matrices at
each node. The latter allows us to, e.g., remove the effect of
spatially correlated noise by subtracting a known or esti-
mated noise covariance matrix from the local covariance
matrices. The algorithm is also able to estimate the eigen-
vectors corresponding to the smallest eigenvalues (e.g., for
TLS estimation), which is not possible in [6,16,17].

Finally, it is noted that there exists other related work
in the context of (b) (see, e.g., [3,4]), which however
requires prior knowledge of the network-wide covariance
matrix. In our case, the network-wide covariance matrix is
assumed to be unknown (and possibly even time-varying).

1.3. Paper outline

The outline of the paper is as follows. Section 2 gives
the problem statement as well as an application example

! The algorithms in [13,14] estimate the eigenvector corresponding
to the smallest eigenvalue of the covariance matrix, but the algorithms
are easily adapted to compute the principal eigenvectors.
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