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a b s t r a c t

In this paper, we consider the problem of manifold approximation with affine subspaces.
Our objective is to discover a set of low dimensional affine subspaces that represent
manifold data accurately while preserving the manifold's structure. For this purpose,
we employ a greedy technique that partitions manifold samples into groups, which are
approximated by low dimensional subspaces. We start by considering each manifold
sample as a different group and we use the difference of local tangents to determine
appropriate group mergings. We repeat this procedure until we reach the desired number
of sample groups. The best low dimensional affine subspaces corresponding to the final
groups constitute our approximate manifold representation. Our experiments verify the
effectiveness of the proposed scheme and show its superior performance compared to
state-of-the-art methods for manifold approximation.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The curse of dimensionality is one of the most funda-
mental issues that researchers have to face across various
data processing disciplines. High dimensional data is often
difficult to manipulate: it might belong to huge parametric
spaces that are challenging to exploit while the corre-
sponding models can be complex enough to make learning
challenging and prone to over-fitting. However, it is not
rare that the data follows some underlying structure,
which can lead to more efficient data representation and
analysis if modeled properly.

The underlying structure of signals of a given family can
often be described adequately by a manifold model that has
a smaller dimensionality than the signal space. Prominent
examples are signals that are related by transformations, like

images captured under different viewpoints in a 3D scene, or
signals that represent different observations of the same
physical phenomenon like EEG and ECG data. Manifold
models have been successfully used in many different
applications like transformation-invariant classification,
recognition and dimensionality reduction [1–3].

In general, manifolds are topological spaces that locally
resemble a Euclidean space. Therefore, although they might
be extremely complicated structures, they have locally, i.e., in
the neighborhood of a point, the same characteristics as the
usual Euclidean space. In this work, we are going to consider
d-dimensional, differentiable manifolds that are embedded
into a higher dimensional Euclidean space, RN ;Nbd. Intui-
tively, one can think of a d-dimensional manifold embedded
into RN as the generalization of a surface in N dimensions:
it is a set of points that locally seem to live in Rd but that
macroscopically synthesize a structure living into RN . For
example, a sphere in R3 and a circle in R2 are both manifolds
of dimensions 2 and 1 respectively. Although manifolds are
appealing for effective data representation, their unknown
and usually strongly non-linear structure makes their
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manipulation quite challenging. There are cases where an
analytical model can represent the manifold, like a model
built on linear combinations of atoms coming from a pre-
defined dictionary [4]. However, an analytical model is
unfortunately not always available. A workaround consists
in trying to infer a global, data-driven parametrization
scheme for the manifold by mapping the manifold data from
the original space to a low-dimensional parametric space. The
problem of unveiling such a parametrization is called mani-
fold learning [1,2].

However, it is in general hard to compute a universal
manifold representation that is accurate for all data in
the datasets. In general, it is not possible to represent all
the non-linearities of the manifold by one single mapping
function. Therefore, instead of using just one global
scheme, it is often preferable to employ a set of simpler
structures to approximate the manifold's geometry. This
can be done in the original space of the manifold. The
objective of the approximation is to create a manifold
model that is as simple as possible while preserving the
most crucial characteristic of a manifold, namely its
geometrical shape. An example of such an approximation
for a 1D manifold is shown in Fig. 1a, where a set of lines
approximates the spiral shape.

In this paper, we approximate generic manifolds with
simple models that are affine subspaces (flats). Such
a choice is motivated by the locally linear character of
manifolds as well as the simplicity and efficiency of flats
for performing local computations like projections. Our
objective is to compute a set of low dimensional flats
that represent the data as accurately as possible, and at the
same time preserves the geometry of the underlying
manifold. We formulate the manifold approximation pro-
blem as a constrained clustering problem for manifold
samples. The constraints are related to the underlying
geometry of the manifold, which is represented by the
neighborhood graph of the data samples. We borrow
elements of the constrained clustering theory to motivate
the use of a greedy scheme for manifold approximation.

We first propose to relate the capability of a set of points to
be represented by a flat, with the variance of the tangents
at these points. Then, we use the difference of tangents
to uncover groups of points that comply with the low
dimensionality of flats. The partitioning is done in a
bottom-up manner where each manifold sample is con-
sidered as a different group at the beginning. Groups are
then iteratively merged until their number reduces to the
desired value. We have tested our algorithm on both
synthetic and real data where it gives a superior perfor-
mance compared to state-of-the-art manifold approxima-
tion techniques.

The rest of the paper is organized as follows. In Section 2,
we discuss the related work in manifold approximation and
other relevant fields like manifold learning and hybrid linear
modeling. In Section 3, we give some mathematical defini-
tions related to manifolds and tangent spaces, which are
essential for the work presented in this paper. In Section 4,
we motivate the use of a greedy strategy with concepts from
constrained clustering theory and we present our novel
problem formulation for the manifold approximation. We
present our approximation algorithm in detail in Section 5.
In Section 6, we describe the experimental setup and the
results of our experiments. Finally, in Section 7, we provide
concluding remarks.

2. Related work

Data representationwith affine models has received quite
some attention lately. Relative approaches usually fall under
the name of either subspace clustering or hybrid linear
modeling. Their objective is to find a set of affine models
explaining the different data sources, i.e., to cluster the data
into groups so that each group can be well represented by a
low-dimensional affine space. A common approach is to
use an iterative scheme to alternate between steps of data
segmentation and subspace estimation aiming at either

Fig. 1. Manifold approximation illustration. On the left, we have an example of a valid approximation by lines of a 1D manifold embedded into R2. The
different colors represent the different groups of samples, each approximated by a line. On the right, we have an example where the approximation does
not align well with the manifold structure, as a result of the median k-flats algorithm [6]. (a) Good manifold approximation example. (b) Bad manifold
approximation example. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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