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a b s t r a c t

This paper deals with the maximum likelihood (ML) estimation of scatter matrix of
complex elliptically symmetric (CES) distributed data when the hypothesized and the true
model belong to the CES family but are different, then under mismatched model condition.
Firstly, we derive the Huber limit, or sandwich matrix expression, for a generic CES model.
Then, we compare the performance of mismatched and matched ML estimators to the
Huber limit and to the Cramér–Rao lower bound (CRLB) in some relevant study cases.

& 2014 Published by Elsevier B.V.

1. Introduction

A fundamental assumption underlying the analysis of
the statistical properties of the maximum likelihood (ML)
estimators is that the true data model and the model used
for the ML estimator calculation are the same, that is, the
model is correctly specified. Unfortunately, this is not
always the case and a model mismatch is possible. It is
natural to ask ourselves what happens to the ML estima-
tors properties under mismatched conditions. Huber [7]
and White [14] have provided an interesting answer to this
question. In their work, they proved that the asymptotic
distribution of the ML estimator in misspecified models is
concentrated on the Kullback–Leibler (KL) divergence
minimizing pseudo-true value and it is Gaussian with the
“sandwich” covariance matrix, to first asymptotic order.

With a formal and rigorous description, let fzkgKk ¼ 1 be a
set of independent and identically distributed (IID) vec-
tors, each one with probability distribution FðzÞ that
admits a measurable probability density function (pdf)

f ¼ dF=dμ with respect to some s-finite measure μ. Sup-
pose that a model with probability distribution Hðz; θÞ and
measurable pdf hðz; θÞ ¼ dHðz; θÞ=dμ, with θAΘ�ℝn, is
assumed, yielding a log-likelihood function (LLF) equal to
ln LK ðθÞ ¼∑K

k ¼ 1ln hðzk; θÞ. If FðzÞaHðz; θÞ for θAΘ, then the
assumed model is misspecified.

Let θ̂ML ¼ arg maxθ ln LK ðθÞ be the ML estimator of θ.
Since K �1 ln LK ðθÞ is the sample mean estimator for
l0ðθÞ ¼ Ef ln hðz; θÞg, θ̂ML will be consistent for the value
θ0 ¼ arg maxθEf ln hðz; θÞg, where the expectation is calcu-
lated with respect to FðzÞ. If FðzÞ is absolutely continuous
with respect to Hðz; θÞ, then

l0ðθÞ�Ef ln f ðzÞg ¼ �
Z

ln
f ðzÞ

hðz; θÞdFðzÞ ¼ �KLðF;HÞ; ð1Þ

where KLðF;HÞ in the KL divergence between the true
model FðzÞ and the assumed model Hðz; θÞ, so θ0 is
also the KL minimizing vector, i.e. θ0 ¼ argminθ KLðF;HÞ.
In the correctly specified model, θ0 is the true data
generating parameter vector. In misspecified models,
this is the “pseudo-true” vector. Moreover, invoking the
central-limit theorem (CLT), Huber and White proved that
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when K-1 we have
ffiffiffiffi
K

p
ðθ̂ML�θ0Þ-Νð0;Hðθ0ÞÞ, where

Hðθ0Þ ¼ Cðθ0Þ�1Bðθ0ÞCðθ0Þ�1, and

½Cðθ0Þ�ij ¼ E
∂2 ln hðz; θ0Þ

∂θi∂θj

� �
;

½Bðθ0Þ�ij ¼ E
∂ ln hðz; θ0Þ

∂θi
∂ ln hðz; θ0Þ

∂θj

� �
;

where the mean values are taken with respect to the true
data pdf f ðzÞ. Hðθ0Þ is the Huber “sandwich” matrix. If the
model is correctly specified, Bðθ0Þ ¼ �Cðθ0Þ and both Bðθ0Þ
and H�1ðθ0Þ are equal to the Fisher information matrix
(FIM). Differently from the Cramér–Rao lower bound
(CRLB), that is calculated from the FIM, the Huber limits
are not lower nor upper bounds. However, they can help in
measuring the effect of model mismatch, at least asymp-
totically, that is, for a large number K of independent data
vectors.

In this work, we derive the Huber limits on the estima-
tion of the covariance matrix of CES distributed data, that is,
when the true and the assumed pdf models belong to the
CES family, but they are different.

Notations: We use trðAÞ, jAj and AH to denote the trace,
i.e. the sum of all the elements along the matrix main
diagonal, the determinant and the Hermitian of the matrix
A, respectively. Moreover ¼d means equal in distribution.

2. Huber limits for CES distributed random vectors

CES distributions constitute a wide family of distribu-
tions whose complex Gaussian, Cauchy, Generalized Gaus-
sian, compound-Gaussian, such as K-distribution and
complex-t, are particular cases. The CES distributions are
widely applied in many areas, such as radar, sonar, and
communications [11,10]. In many applications, where adap-
tive signal processing is performed, the estimation of the
observation vector covariance matrix is required (see e.g.
[9,6,1–4,15,16]), that is why we address here the problem of
asymptotic performance evaluation of ML matrix estimators
under mismatched modeling.

A complex N-dimensional random vector z is CES
distributed, in shorthand notation zACENðμ;Σ; gÞ, if its
pdf is of the form

hðzÞ ¼ cN;gjΣj�1gððz�μÞHΣ�1ðz�μÞÞ; ð2Þ
where g is the density generator, cN,g is a normalizing
constant, μ¼ Efzg and Σ is the full-rank normalized covar-
iance matrix, also called scatter matrix, such that trðΣÞ ¼N.
In particular, if M¼ Efðz�μÞðz�μÞHg is the covariance
matrix of the vector z, then Σ¼N=trðΜÞUM. It is important
to observe that for some CES distributions the un-
normalized covariance matrix M¼ EfzzHg does not exist,
but the scatter matrix Σ is still well defined.

Based upon the stochastic representation theorem, [10]
any zACENðμ;Σ; gÞ with rankðΣÞ ¼ krN admits the sto-
chastic representation z¼ dμþRTu¼ dμþRTðw=RwÞ, where
the non-negative random variable (r.v.) R9

ffiffiffiffi
Q

p
, the so-

called modular variate, is a real, non-negative random
variable, u is a k-dimensional vector uniformly distributed
on the unit hyper-sphere with k�1 topological dimensions
such that uHu¼ 1, R and u are independent and Σ¼ TTH is a

factorization of Σ, where T is a N� k matrix and rankðTÞ ¼ k.
In the following derivations, we suppose that Σ is full-rank,
then rankðTÞ ¼ rankðΣÞ ¼N, and that it is real. w is a
complex normal distributed random vector, w� CNð0; IÞ,
and R2

w9Qw is a Gamma distributed non-negative r.v.,
independent of u and z, with shape and scale parameters
equal to N and 1, respectively, i.e. Qw �GamðN;1Þ. In
particular, we have that EfQwg ¼N and EfQ2

wg ¼NðNþ1Þ.
Since in many scenarios (e.g. radar and sonar) the mean

value of the data vectors can be considered null, we
assume in the derivations μ¼ 0. Moreover, we suppose
that all the characteristic parameters of the CES distribu-
tions are known, except the elements of the scatter matrix
Σ, hence in our case θ¼ vecðΣÞ. It is worth noting that the
following derivation is valid also in the case that not all the
elements of the scatter matrix Σ are unknown, e.g. because
the matrix has some a priori known structure (e.g. sym-
metric, known trace, or autoregressive model). In this case,
θ is only a subset of the elements of Σ. If all the elements
are unknown, the Huber limit for CES distributions repre-
sents an alternative formulation of the asymptotic covar-
iance of M-estimators, as presented in [10]. Let us now
calculate the Huber limits.

Evaluation of E ∂ ln hðz;θÞ
∂θi

∂ ln hðz;θÞ
∂θj

n o
By defining t ¼ zHΣ�1z, Ai ¼ ∂Σ=∂θi, and remembering

that ð∂ ln jΣj=∂θiÞ ¼ trðΣ�1AiÞ and ð∂ðzHΣ�1zÞÞ=∂θi ¼ �zH

Σ�1AiΣ�1z [8, p. 521,13, p. 1401], we have that

∂ ln hðz; θÞ
∂θi

¼ �trðΣ�1AiÞ�
∂ ln gðtÞ

∂t
zHΣ�1AiΣ�1z: ð3Þ

Then,

∂ ln hðz; θÞ
∂θi

∂ ln hðz; θÞ
∂θj

¼ trðΣ�1AiÞtrðΣ�1AjÞ

þ∂ ln gðtÞ
∂t

zHΣ�1ðtrðΣ�1AiÞAjþtrðΣ�1AjÞAiÞΣ�1z

þ ∂ ln gðtÞ
∂t

� �2

zHΣ�1AiΣ�1zzHΣ�1AjΣ�1z: ð4Þ

By making use of the stochastic representation of z [10] in

(4), we can state that t ¼ zHΣ�1z¼ R2uHTHΣ�1Tu¼ R29Q
(the so-called second-order modular variate). Defining the
vector x¼ Tu¼ Tðw=RwÞ, with Rw independent of w, and
the vector t¼ Tw� CNð0;ΣÞ with Σ¼ EfttHg we can write

∂ ln hðz; θÞ
∂θi

∂ ln hðz; θÞ
∂θj

¼ trðΣ�1AiÞtrðΣ�1AjÞ

þQ
∂ ln gðQ Þ

∂Q
xHΣ�1ðtrðΣ�1AiÞAjþtrðΣ�1AjÞAiÞΣ�1x

þ Q
∂ ln gðQ Þ

∂Q

� �2

xHΣ�1AiΣ�1xxHΣ�1AjΣ�1x: ð5Þ

Now observing that, for instance [5], EftHΣ�1AjΣ�1tg ¼
EðR2

wÞEfxHΣ�1AjΣ�1xg, and using the properties of com-

plex Gaussian vectors [8, p. 564], that EftHΣ�1AjΣ�1tg ¼
trðΣ�1AjΣ�1EfttHgÞ ¼ trðΣ�1AjÞ and EftHCt tHDtg ¼ trðCΣÞ
trðDΣÞþtrðCΣDΣÞ, where C and D are Hermitian matrices,
we obtain

E
∂ ln hðz; θÞ

∂θi
∂ ln hðz; θÞ

∂θj

� �
¼ trðΣ�1AiÞtrðΣ�1AjÞ
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