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a b s t r a c t

Complex-valued sparse reconstruction is conventionally solved by transforming it into
real-valued problems. However, this method might not work efficiently and correctly,
especially when the size of the problem is large, or the mutual coherence is high. In this
paper, we present a novel algorithm called the arctangent regularization (ATANR), which
can handle the complex-valued problems of large size and high mutual coherence directly.
The ATANR is implemented with the iterative least squares (IRLS) framework, and accele-
rated by the dimension reduction and active set selection steps. Further, we summarize
and analyze the common properties of a penalty kernel which is suitable for sparse
reconstruction. The analyses show that the key difference, between the arctangent kernel
and the ℓ1 norm, is that the first order derivative of ATANR is close to zero for a nonzero
variable. This will make ATANR less sensitive to the regularization parameter λ than ℓ1
regularization methods. Finally, lots of numerical experiments validate that ATANR usually
has better performance than the conventional ℓ1 regularization methods, not only for the
random signs ensemble, but also for the sensing matrix with high mutual coherence, such
as the resolution enhancement case.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Sparse reconstruction has been attracting more and
more attention in recent decades, especially after the
establishment of compressive sensing (CS) by David L.
Donoho et al. during 2004–2006 [1–3]. CS employs the ℓ0
quasi-norm to depict the sparsity of a signal, and describes
the sparse reconstruction problem (SRP) as an ℓ0 quasi-
norm optimization, which is proven to be NP-hard [4].
Encouragingly, Candes et al. propose the famous restricted
isometric property (RIP) [5], which describes an equivalent
condition between the ℓ1 regularization and the ℓ0

quasi-norm optimization. The advantages are inspiring:
on the one hand, the ℓ1 norm optimization is convex, thus
its local minima is also its global minima; on the other
hand, there are already lots of excellent algorithms solving
ℓ1 regularization problems efficiently, such as the least
absolute shrinkage and selection operator (LASSO) [6–8],
and the ℓ1 regularized least squares (ℓ1LS) [9]. Besides the
ℓ1 regularization, many other penalty methods were pro-
posed, including the MCþ algorithm [10], and the SparseNet
[11], etc.

It is worth noting that these methods are most origin-
ally developed for the real-valued SRPs, and are almost not
for complex-valued ones directly. However, in some appli-
cations, we really have to handle the complex-valued SRPs.
For example, in radar imaging, the desired scattering
coefficients are always considered to be complex numbers.
In order to solve the complex-valued problems, it is common
to transform them into the real-valued ones [12]. However,
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this way will dramatically increase the computation load as
the dimensions of the measurement matrix AACn�m grow
up, and it might fail when the mutual coherence is high.

Although there are a few methods which could deal
with the complex-valued problems directly, such as the
orthogonal matching pursuit (OMP) [13], the LASSO [6–8],
and the sparsity driven method [14]. However, their
disadvantages are obvious: For OMP, it shows bad perfor-
mance when the mutual coherence of A is high. For LASSO,
it is time consuming for searching a proper regularization
parameter λ by the cross validation method [15]. Even
for the LARS-LASSO [8] which does not need to assign a
proper λ, it might be still very slow when n and m are both
large. Because it requires to compute the whole solution
paths first, and then select a proper solution by AIC, BIC
or Cp-type risk [8,7,15]. Moreover, when n5m and the
mutual coherence is high, the LARS-LASSO might fail
to find a proper positive direction during its iterations.
For sparsity driven method, it has good performance
on enhancing the features of block targets; however, it
has several parameters which should be well designed.
Besides, the Hilbert transform based methods are usually
used to analyze the nonlinear and non-stationary complex
signals, such as [16,17]. However, they do not emphasize
the sparsity of a signal, so that they show worse perfor-
mance on SRPs than the sparse reconstruction methods.

In this paper, we design an algorithm called the arctan-
gent regularization, which could handle the complex-valued
sparse reconstruction problems directly and efficiently, and
be suitable for the problem of large size. It is based on the
penalty method with the arctangent function as its penalty
kernel. Compared with the ℓ1 norm penalty kernel, the
penalty kernel of ATANR is closer to the ℓ0 quasi-norm. With
respect to the ℓ1 norm penalty kernel, the larger magnitude
entry will correspond to a larger penalty term. Whereas the
arctangent penalty kernel will suppress the influence of the
large magnitudes, such that the solution of ATANR seems to
be less sparse than that of ℓ1 regularization. By the dimen-
sion reduction and active set selection steps, ATANR is
extended to solve the SRPs of large size. Numerical experi-
ments show that ATANR costs much less execution time than
LASSO and ℓ1LS when the size of the problem reaches
2000�4000.

The remaining sections are organized as follows: In
Section 2, we briefly introduce the complex-valued sparse
reconstruction problem and some existing penalty algo-
rithms. In Section 3, ATANR is proposed. It is implemented
by the IRLS framework, and further improved by the
dimension reduction and active set selection steps. In
Section 4, the common properties of penalty functions,
which are suitable for sparse reconstruction, are summar-
ized and analyzed in detail. These properties expose that
the key difference, between ATANR and ℓ1 regularization,
is that the first order derivative of ATANR is close to zero
when the variable is nonzero. This difference also results in its
less sensitivity to the regularization parameter λ. In Section 5,
we focus on the performance of ATANR on the random signs
ensemble [18]. Numerical experiments show that ATANR has
nearly the same performance as OMP, and outperform LASSO
and ℓ1LS. In Section 6, plenty of simulations were performed
for the resolution enhancement case, and ATANR exhibited

good performance both in the discrete scatters case and in the
continuous block case. In Section 7, we summarize the main
work of this paper, and list the next work of ATANR in the
future.

2. Complex-valued sparse reconstruction and
penalty methods

In this section, we introduce the complex-valued sparse
reconstruction problem, and briefly review some excellent
existing penalty algorithms.

2.1. Complex-valued sparse reconstruction

The complex-valued sparse reconstruction usually solves
an underdetermined linear system

y¼ Axþn

where AACn�m is the measurement matrix with its rank n
and n5m. xACm, yACn and nACn denote the input
signal, the measurements and the noise vector, respectively.
In CS, the sparsity of x is defined by the ℓ0 quasi-norm,
namely ‖x‖0 ¼ jsuppðxÞj ¼ jfi: xia0gj, where xi denotes the
ith entry of x. When x has sAZþ nonzero entries, we say x
is s-sparse.

Then, CS describes the SRP as an ℓ0 quasi-norm
optimization.

x̂ ¼ arg min
x

‖x‖0; s:t: ‖Ax�y‖2rε ð1Þ

where ε is related to the variance of the noise vector n, and
‖�‖2 denotes the ℓ2 norm.

Usually, in order to solve the complex-valued SRP, it is
required to transform it into the real-valued problem, as
shown in (2). It implies that the input signal x should be
transformed into a vector composed of real values, then
the linear system y¼Ax can be rewritten as

Ar �Ai

Ai Ar

" #
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It is evident that (2) is real-valued, but meanwhile it
increases the problem's dimensions. This indicates that
the computation complexity also grows up sharply, thus it
is not suitable for the measurement matrix A of large size.
Therefore, we should develop the algorithm handling the
complex-valued problems straight and being suitable for
the large size problems.

2.2. Penalty methods

The complex-valued problem (1) could be usually
solved by the penalty methods, such as the ℓ1 regulariza-
tion (LASSO and ℓ1LS) and the MCþ . Generally, the
penalized problem usually has a form of

x̂ðλÞ ¼ arg min
x

LðAx; yÞþ ∑
m

i ¼ 1
Jðjxij; λiÞ ð3Þ

where LðAx; yÞ is the fidelity constraint. In most applica-
tions, it is considered to be

L Ax; yð Þ ¼ 1
2 ‖Ax�y‖22
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