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The bin-normalized frequency-domain block LMS (FBLMS) algorithm has low computa-
tional burden and potential fast convergence; however, it suffers from a biased steady-
state solution when the reference signal lags behind the desired signal or the adaptive
filter is of insufficient length. This paper proposes a unified framework for the FBLMS
algorithm, which can be used to comprehensively analyze its steady-state behavior.
Furthermore, a modified FBLMS algorithm with guaranteed optimal steady-state perfor-
mance is proposed based on the framework. Simulations are carried out to demonstrate
the benefit of the proposed algorithm.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Adaptive filtering has been widely used in many situa-
tions such as telecommunication systems, acoustic echo
cancellation, active noise control, and array processing,
where the least-mean-square (LMS) algorithm is commonly
used due to its simplicity and robustness [1,2]. Unfortunately,
it suffers from slow convergence for reference signals with
large eigenvalue disparity, and moreover, its computational
burden is too heavy in many application scenarios because
the filter length has to be set very large [1,2].

To overcome the problem of slow convergence,
transform-domain LMS (TDLMS) algorithms [1-4] have
been suggested, which preprocess the reference signal by
using orthogonal transforms such as the discrete Fourier
transform (DFT), discrete cosine transform (DCT), discrete
sine transform (DST), and discrete Hartely transform (DHT),
and then set power-normalized step sizes. The improve-
ment of the convergence rate has been proven by many
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researchers [3,4]. However, the computational burden of
the TDLMS algorithms is substantially heavier than that of
the LMS algorithm because the orthogonal transforms are
often performed for each new input sample. Although
partial updating and sliding transform techniques [5,6]
can be used to mitigate the problem, the computational
burden is still a challenge for implementation of the TDLMS
algorithms in real-time systems.

Apart from the application of the TDLMS algorithm, the
DFT in particular can also be used to realize the frequency-
domain block least-mean-square (FBLMS) algorithm [7],
which is a computational efficient implementation of the
block LMS (BLMS) algorithm. The computational burden of
the FBLMS algorithm is significantly less than that of the
LMS algorithm because the fast Fourier transform (FFT) is
used to calculate both the block filtering output and the
update terms in the frequency domain. Furthermore, when
the step size of the adaptive filter is normalized by the
reference signal power in each frequency bin, the conver-
gence speed of the FBLMS algorithm can be significantly
increased for reference signals with large power spectral
disparity [7,8]. Therefore the bin-normalized FBLMS algo-
rithm is widely used in many applications that require
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large filter length and fast convergence, e.g., acoustic echo
cancellation, active noise control, channel estimation, and
equalization [9-11]. Nevertheless, it has been pointed out
that the bin-normalized FBLMS algorithm suffers from an
increase in the steady-state mean-square error in non-
causal circumstances [12] or with insufficient filter length
[13], which is very common in many applications of
adaptive filters. For example, the reference signal can lag
behind the desired signal in an adaptive equalizer or in an
adaptive feedback active noise control system. On the
other hand, for an acoustic echo cancellation systems used
in a room with long reverberation time, it is often the case
that the adaptive filter is of insufficient length. A
frequency-domain Newton's algorithm has been derived
in [12] to improve the steady-state behavior in non-causal
circumstances. However, it requires a spectral factorization
of the estimated power spectral density of the reference
signal, which forms an obstacle to its implementation.

In this paper, a unified framework of the FBLMS algorithm
without any assumptions on the signal and system model is
proposed, which can be used to comprehensively analyze the
steady-state behavior of the algorithm. Based on this frame-
work, a modification is proposed on the existing algorithm
that guarantees optimal steady-state behavior. Throughout
this paper, lowercase letters are used for scalar quantities,
bold lowercase for vectors, and bold uppercase for matrices.
Subscript f denotes frequency-domain representation of each
signal and k is reserved for the block index.

2. Analysis of FBLMS steady-state behavior based on a
unified framework

Let x(k)=[x(kN—N), x(kN—=N+1), ..., x(kN+N—1)]" be
the reference signal vector, where the superscript T repre-
sents the transpose operation, w(k)=[wg(k), wy(k), ...,
wy—1(k)]" be the N-tap filter, and d(k)=[d(kN—N),
d(kN—N+1), ..., d(kN+N—1)]" be the desired signal vector.
Then the error vector in the frequency domain can be
described as

er(k) = FGonF ! [dy (k) — X, (kywy (k)] 1)

where F represents the 2N x 2N discrete Fourier transform
(DFT) matrix, d{k)=F[0; .. n, d"(k)]", X/(k)=diag[x(k)]=diag
[Fx(k)], wik)=F[w'(k), 0, . ]", and
Oy.n  On,
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There are two kinds of FBLMS algorithms: constrained
and unconstrained [7]. The unconstrained FBLMS algo-
rithm is more computationally efficient by removing the
constrained operations; however, the aliasing caused by
circular convolution leads to poorer convergence behavior
[8]. Therefore this paper focuses only on the constrained
algorithm.

The constrained filter update equation in the frequency
domain is given by [7]

wy(k+1) = wy(k)+FGyoF ' uM; X (k)er (k) 3)

where the superscript H represents the conjugate trans-
pose operation, u is a constant step size, My=diag[¢] is a

diagonal matrix with ¢ representing a vector containing
the normalizing factors for each frequency bin, and
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Note that the non-causal part of the filter coefficients is
not affected by the updating process, due to the constraint
operation in (3). Therefore, multiplying both sides of (3) by
F~! yields

w(k+1)

B w(k)
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where e(k)=[e(kN), e(kN+1), ..., e(kN+N—1)]",

Xi X
X(k)=F X (l)F = {x; x2] 6)
1

is a circulant matrix whose first row is x(k), and

M, Mz}

_f1 _
M=F 'M{F= {Mz M, (@)
is also a circulant matrix whose first column is F~'& (the
inverse Fourier transform of the normalizing vector).

With simple derivation, (5) becomes

w(k+1) = w(k)+u[M; X, + M, X, ]e(k) 8)
where
e(k) = d(k)— XS wi(k). 9)

Taking expectation on both sides of (8) and using the
independence assumption with respect to the reference
signal and filter coefficients [1,2] yields

E[w(k+1)] = [INX N—uM;R— ﬂMZR] E[W(I)] + My T+ My,

(10)
with
R=E [xzxg] = NR,
R= E[x1x§]
r=E[Xod(k)] = Nrgy,
F=E[X;d(k)], an

where R, represents the autocorrelation matrix of the
reference signal and ry, represents the correlation vector
between the reference signal and the desired signal, and
both of these are needed for the Wiener solution. The
steady-state solution of (10) is

E[Wa (k)] = [MiR+M;R] UMy M. (12)

Eq. (12) is a unified description without any assumption
on the signal and system models, based on which, the
steady-state behavior of the FBLMS algorithm can be
investigated.

If a constant normalizing factor is used in the frequency
domain, i.e., Mg=El,  2n, then My =0y, y according to (7),
so that

E[Wo(k)] =R 't =R, "1y, (13)

which is exactly the causal Wiener filter [1,2].
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