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a b s t r a c t

We introduce a new blind source separation approach, based on modified Kullback–
Leibler divergence between copula densities, for both independent and dependent source
component signals. In the classical case of independent source components, the proposed
method generalizes the mutual information (between probability densities) procedure.
Moreover, it has the great advantage to be naturally extensible to separate mixtures of
dependent source components. Simulation results are presented showing the conver-
gence and the efficiency of the proposed algorithms.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Blind source separation (BSS) is an instrumental pro-
blem in signal processing which has been addressed in the
last three decades. We consider an instantaneous linear
mixture described by

xðtÞ ≔AsðtÞþnðtÞARp; ð1Þ
where AARp�p is an unknown non-singular mixing
matrix, sðtÞ ≔ðs1ðtÞ;…; spðtÞÞ> is the unknown vector of
source signals to be estimated from xðtÞ ≔ðx1ðtÞ;…; xpðtÞÞ> ,
the vector of observed signals. The number of sources and
the number of observations, for the present work, are
assumed to be equal. The presence of additive noise nðtÞ
within the mixing model complicates significantly the BSS
problem. It is reduced by applying some form of

preprocessing such as denoising the observed signals
through regularization approach, see e.g. [15]. The goal is
to estimate the vector source signals sðtÞ using only the
observed signals xðtÞ. The estimate yðtÞ of the source
signals sðtÞ can be written as

yðtÞ ¼ BxðtÞ; ð2Þ
where BARp�p is the de-mixing matrix. The question is
how to obtain the de-mixing matrix bB which has to be
close to the ideal solution A�1, using only the observed
signals xðtÞ? It is well known, by Darmois theorem, that if
the source components are mutually independent and at
most one component is Gaussian, a consistent estimate bB
of A�1 (up to scale and permutation indeterminacies of
rows) is the one that makes the components of the vector
yðtÞ independent; see e.g. [6]. The corresponding signalsbyðtÞ ≔bBxðtÞ are the estimate of the source signals sðtÞ.
Under the above hypotheses, many procedures have been
proposed in the literature. Some of these procedures use
second or higher order statistics, see e.g. [13,2] and the
references therein, others consist of optimizing (on the
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de-mixing matrix space) an estimate of some measure of
dependency structure of the components of the vector yðtÞ.
As measures of dependence used in BSS, we find in the
literature the criterion of mutual information (MI) [14,7],
the criteria of α, β and Renyi's-divergences [5,19], and the
criteria of ϕ-divergences [15]. The procedures based on
minimizing estimates of MI are considered as the most
efficient, since this criterion can be estimated efficiently,
other procedures using divergences lead to robust method
for appropriate choice of divergence criterion [15]. In this
paper, we will focus on the criterion of MI (called also
modified Kullback–Leibler divergence), viewed as measure
of difference between copula densities, and we will use
it to propose a new BSS approach that applies in both cases
of independent or dependent source components. In the
following, we will show that the mutual information of
a random vector Y ≔ðY1;…;YpÞ> can be written as the
modified Kullback–Leibler divergence (KLm-divergence)
between the copula of independence and the copula of
the vector. Then, we propose a separation procedure based
on minimizing an appropriate estimate of KLm-divergence
between the copula density of independence and the
copula density of the vector. This approach applies in
the standard case, and we will show that the proposed
criterion can be naturally extended to separate mixture of
dependent source components. The proposed approach
can be adapted also to separate complex-valued signals. In
all the sequel, we assume that at most one source is
Gaussian, and we will treat separately the case of inde-
pendent source components, and then the case of depen-
dent source components. Chen et al. [3] proposed a BSS
algorithm (for independent source components) based
on minimizing a distance between the parameter of
the copula of the estimated source and the value of the
parameter corresponding to copula of independence. Ma
and Sun [9] proposed a different criterion combining the
MI between probability densities and Shannon entropy of
semiparametric models of copulas.

2. Brief recalls on copulas

Consider a random vector Y ≔ðY1;…;YpÞ> ARp, pZ1,
with joint distribution function (d.f.) FYð�Þ: yARp↦FYðyÞ ≔
FYðy1;…; ypÞ ≔PðY1ry1;…;YprypÞ, and continuous mar-
ginal d.f.'s FYj ð�Þ: yjAR↦FYj ðyjÞ ≔PðYjryjÞ, 8 j¼ 1;…;p. The
characterization theorem of Sklar [17] shows that there
exists a unique p-variate function CYð�Þ: ½0;1�p↦½0;1�, such
that, FYðyÞ ¼CYðFY1 ðy1Þ;…; FYp ðypÞÞ, 8y ≔ðy1;…; ypÞ> ARp.
The function CYð�Þ is called a copula and it is in itself a joint
d.f. on ½0;1�p with uniform marginals. We have for all
u ≔ðu1;…;upÞ> A ½0;1�p, CYðuÞ ¼PðFY1 ðY1Þru1;…; FYp ðYpÞ
rupÞ. Conversely, for any marginal d.f.'s F1ð�Þ;…; Fpð�Þ,
and any copula function Cð�Þ, the function CðF1ðy1Þ;…;

FpðypÞÞ is a multivariate d.f. on Rp. On the other hand, since
the marginal d.f.'s FYj ð�Þ, j¼ 1;…; p, are assumed to be
continuous, then the random variables FY1 ðY1Þ;…; FYp ðYpÞ
are uniformly distributed on the interval [0, 1]. So, if the
components Y1;…;Yp are statistically independent, then
the corresponding copula writes C0ðuÞ ≔∏p

j ¼ 1uj; 8uA
½0;1�p. It is called the copula of independence. Define,
when it exists, the copula density (of the random vector Y)

cYðuÞ ≔ð∂p=∂u1⋯∂upÞCYðuÞ; 8uA ½0;1�p. Hence, the copula
density of independence c0ð�Þ is the function taking the
value 1 on ½0;1�p and zero otherwise, namely,

c0ðuÞ ≔1½0;1�p ðuÞ; 8uA ½0;1�p: ð3Þ

Let f Yð�Þ, if it exists, be the probability density on Rp

of the random vector Y ≔ðY1;…;YpÞ> , and, respectively,
f Y1

ð�Þ;…; f Yp
ð�Þ, the marginal probability densities of the

random variables Y1;…;Yp. Then, a straightforward com-
putation shows that, for all yARp, we have

f YðyÞ ¼ ∏
p

j ¼ 1
f Yj

ðyjÞcYðuÞ; ð4Þ

where u ≔ðu1;…;upÞ> ≔ðFY1 ðy1Þ;…; FYp ðypÞÞ> . In the
monographs by [11,8], the reader may find detailed
ingredients of the modeling theory as well as surveys of
the commonly used semiparametric copulas.

3. Mutual information and copulas

The MI of a random vector Y ≔ðY1;…;YpÞ> ARp is
defined by

MI Yð Þ ≔
Z
Rp
� log

∏p
j ¼ 1f Yj

ðyjÞ
f YðyÞ

f Y yð Þ dy1⋯dyp: ð5Þ

It is called also the modified Kullback–Leibler divergence
(KLm-divergence) between the product of the marginal
densities and the joint density of the vector. Note also that
MIðYÞ≕KLmð∏p

j ¼ 1f Yj
; f YÞ is nonnegative and achieves its

minimum value zero if and only if (iff) f Yð�Þ ¼∏p
j ¼ 1f Yj

ð�Þ,
i.e., iff the components of the random vector Y are statisti-
cally independent. An equivalent formula of (5) is

MI Yð Þ ≔E � log
∏p

j ¼ 1f Yj
ðYjÞ

f YðYÞ

 !
; ð6Þ

where Eð�Þ is the mathematical expectation. Using the
relation (4), and applying the change variable formula for
multiple integrals, we can show that MIðYÞ can be written
as

MI Yð Þ ¼
Z
½0;1�p

� log
1

cYðuÞ

� �
cY uð Þ du≕KLm c0; cYð Þ

¼ Eðlog cYðFY1 ðY1Þ;…; FYp ðYpÞÞÞ≕�HðcYÞ;

where HðcYÞ ≔
R
½0;1�p � logðcYðuÞÞcYðuÞ du is the Shannon

entropy of the copula density cYð�Þ. The relation above
means that the MI of the random vector Y can be seen as
the KLm-divergence between the copula density of inde-
pendent c0ð�Þ, see (3), and the copula density cYð�Þ of the
random vector Y. We summarize the above results in the
following proposition.

Proposition 1. Let YARp be any random vector with
continuous marginal distribution functions. Then, the MI of
Y can be written as the KLm-divergence between the copula
density c0 of independence and the copula density of the
vector Y:

MI Yð Þ ¼
Z
½0;1�p

� log
1

cYðuÞ

� �
cY uð Þ du≕KLm c0; cYð Þ

¼ Eðlog cYðFY1 ðY1Þ;…; FYp ðYpÞÞÞ: ð7Þ
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