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a b s t r a c t

Distance metric learning and classifier design are two highly challenging tasks in the

machine learning community. In this paper we propose a new large margin nearest local

mean (LMNLM) scheme to consider them jointly, which aims at improving the

separability between local parts of different classes. We adopt ‘local mean vector’ as the

basic classification model, and then through linear transformation, large margins

between heterogeneous local parts are introduced. Moreover, by eigenvalue decom-

position, we may also reduce data’s dimensions. LMNLM can be formulated as a

semidefinite programming (SDP) problem, so it is assured to converge globally.

Experimental results show that LMNLM is a promising algorithm due to its leading to

high classification accuracies and low dimensions.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Distance metric learning is of fundamental importance
to many machine learning tasks, such as supervised
classification, unsupervised clustering, semi-supervised
learning, image retrieval, etc. [1]. A good distance metric
may provide us with some enlightenment on underlying
data structures, and thus an improved performance is
expected to be obtained with the learned metric. In this
paper we concentrate on supervised classification pro-
blems, so if a good metric can be learned effectively,
higher classification accuracies will be achieved.

Another important aspect in machine learning is how
to design classifiers. Similar to distance metric learning, a
good classifier should also be data-dependent, i.e., some
implicit data structures should be revealed by the
designed classifier. Due to the common requirement of
metric learning and classifier design, the two seemingly
different problems could be considered jointly. Moreover,
although there are some well-established classification

approaches such as support vector machines (SVMs) [2,3]
and neural networks [4], most of these approaches do not
consider the problem of learning a proper distance metric
that is suitable for the corresponding classification
model. Motivated by the above analysis, in this paper,
we combine distance metric learning and classifier design
as a whole, and this combination is one of central
guidelines for our work.

In view of minimizing the structural risk, a special kind
of ‘large margin’ classifier, support vector machines [2,3],
achieved general success in the last decade. Recently,
some metric learning and/or classifier design works have
adopted ideas similar to ‘large margin’ of SVMs. Xing et al.
[5] applied the side information for Mahalanobis distance
metric learning and aimed at minimizing the sum of
squared distances between similarly labeled pairs and
simultaneously maintaining a lower bound on the sum of
squared distances between dissimilarly labeled ones.
Although can be solved with global optimal solutions,
the algorithm of [5] does not involve any slack variables
and may incur overfittings. Bachrach et al. [6] introduced
the ‘margin’ into feature selection tasks. The algorithm of
[6] cannot be described as a convex optimizing problem
and usually converges with local optimal solutions. The
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work in [7–10] concentrated on different ‘marginal’ metric
learning algorithms for k-NN classifiers. They employ the
k-NN classifier as classification tools, which utilize
information from k nearest neighbors and may neglect
the discriminative information derived from other useful
inputs. Veenman et al. [11] pioneered the combination of
feature weighting and the nearest mean (NM) classifier.
One obvious limitation of this feature weighting algorithm
is that it is only suitable for binary classification problems.
Jenssen et al. [12] designed an NM classifier which is
based on nonlinear transformations. Peltonen et al. [13]
introduced a probabilistic model to generalize linear
discriminant analysis (LDA) [14,15] for selecting informa-
tive or relevant components. The realization of both
[12,13] needs to evaluate the class probability density
function with Parzen window, and consequently, the
number of training examples used for the evaluation
should be large enough to assure a high evaluation
accuracy. Therefore, the algorithms of [12,13] may be
unsuitable for applications when the small sample size
(SSS) problem occurs. Yang et al. [16] proposed a distance
metric learning algorithm that optimizes local compact-
ness and separability by a probabilistic framework. The
algorithm of [16] is not convex and often leads to local
optimal solutions.

Our work in this paper is also motivated by the ‘large
margin’ enlightenment. In particular, here we propose a
large margin nearest local mean (abbreviated as ‘LMNLM’)
classifier which introduces large margins between
local parts of different target classes and expects to
improve the class separability. To reach this goal, we
replace the old Euclidean distance metric by a new
Mahalanobis one through linear transformations.
Fortunately, we can express our algorithm as a semidefi-
nite programming (SDP) problem, which is one special
kind of convex optimizing problems. Due to its convex
nature, the proposed LMNLM algorithm can avoid the
trouble of local minima since it is assured to converge
globally.

Dimensionality reduction is also quite important in the
machine learning community. With the help of dimen-
sionality reduction, three advantages are expected to be
obtained in pattern recognition tasks. Firstly, we can save
the memory space and reduce the system complexity.
Secondly, those useless and harmful noisy components
can be removed and improved classification accuracies
can be obtained. Thirdly, it makes us capable to deal with
data set with few samples and high dimensions and thus
weaken the disadvantages caused by the so-called curse-
of-dimensionality problem. In this paper, we also consider
the dimensionality reduction problem, and how the
proposed algorithm leads to lower-dimensional solutions
is also introduced.

The rest of this paper is organized as follows. In Section
2, we discuss how the LMNLM classifier is designed and
how the dimensions are reduced in detail. Some related
work and their relations to our work are discussed in
Section 3. In Section 4, we conduct classification experi-
ments, respectively, on synthetic data set, benchmark data
sets, and radar high-resolution range profiles (HRRP) data
set, and then an analysis of these results follows. Finally,

we give concluding remarks and suggestions for future
work in Section 5.

2. The LMNLM scheme

Suppose that we are given a set of data points fxkjxk 2

RD
g with k 2 f1;2; . . . ;ng, and that yk 2 f1;2; . . . ; cg denotes

the class label for xk. fm1; . . . ;mcg are the corresponding
mean vectors for samples in c classes. Given a testing
point z, d2

ðz;mÞ ¼ kz� mk2
2 denotes the squared Euclidean

distance between z and m. Based on the above notations,
the nearest mean (NM) classifier can be defined as
follows: we decide that the testing point z belongs to
class g, if for 8h 2 f1;2; . . . ; cg, d2

ðz;mgÞ � d2
ðz;mhÞ is always

satisfied.
The NM classifier is simply modeled with class mean

vectors. Under the assumption of statistically independent
features with equal covariance, i.e.

P
1 ¼

P
2 ¼ � � � ¼P

c ¼ s2I, Euclidian distance is optimal with respect to
Bayesian criterion. However, the above assumptions are
too strict to satisfy in most real-world applications. Firstly,
the assumption of equal covariance may be unsatisfied,
i.e.,

P
1a
P

2a � � �a
P

c . Secondly, the NM classifier is only
suitable for single modal distributed data. However, in
practice, many data are multimodal distributed. Thirdly,
the assumption that different features have the same
variance may be unsatisfied, i.e., different diagonal
components of

P
i may be unequal to each other. Fourthly,

features may be statistically dependent, i.e.,
P

i may be
not a diagonal matrix but with non-zero non-diagonal
elements, and in this situation, cross-correlations among
different features should be considered as well. For the
above third and fourth case, adopting the Mahalanobis
distance will be a better choice than adopting the
Euclidean one, because the former can avoid the limita-
tion that different features are statistically independent
with equal variance. To treat with the limitation in the
above first case, we can either employ different covariance
matrix for each class, e.g., utilizing the multivariate
Gaussian classifier, or change the ‘mean vector’ classifica-
tion model into another one that does not require the
covariance matrix for each class to be the same. However,
for the limitation in the above second case, due to it is
caused by the intrinsic ‘mean vector’ model of the NM
classifier, we can only employ other classification models
to avoid this limitation.

According to the above analysis, an alternative model,
the ‘local mean vector’ one, is proposed to replace the old
‘mean vector’ one. With this new model, the limitations in
the first and second cases are expected to be released and
even avoided. Next we give the definition of our new
model.

Definition 1. The local mean vector.

Suppose that the affinity matrix G 2 Rn�n is calculated as

Gij ¼ expð�kxi � xjk
2=2s2Þ for iaj and Gii ¼ 0, where s is

the kernel width parameter. Then xk’s local mean vector

for samples in class l is defined as

mkl ¼

P
yi¼lGkixiP

yi¼lGki
(1)
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