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a b s t r a c t

Subspace-based methods have been effectively used to estimate multi-input/multi-out-
put, discrete-time, linear-time-invariant systems from noisy spectrum samples. In these
methods, a critical step is splitting of two invariant subspaces associated with causal and
non-causal eigenvalues of some structured matrices built from spectrum measurements
via singular-value decomposition in order to determine model order. Mirror image
symmetry with respect to the unit circle between the eigenvalue sets of the two invariant
spaces, required by the subspace algorithms, is lost due to low signal-to-noise ratio,
unmodeled dynamics, and insufficient amount of data. Consequently, the choice of model
order is not straightforward. In this paper, we propose a new model order selection
scheme that is insensitive to noise and undermodeling and based on the regularized
nuclear norm optimization in combination with a recently developed subspace-based
spectrum estimation algorithm which uses non-uniformly spaced, in frequencies, spec-
trum measurements. A detailed simulation study shows the effectiveness of the proposed
scheme to large amplitude noise over short data records. Examples illustrating application
of the proposed scheme to real-life problems are also presented. The proposed scheme
can be readily integrated into frequency-domain instrumental variable subspace algo-
rithms to estimate auto-power spectral density or cross-power spectral density function
matrices from non-uniformly spaced, in frequencies, spectrum measurements.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Subspace methods are popular to obtain low-order state-
space models of multi-input/multi-output (MIMO), linear-
time-invariant (LTI) systems from noise corrupted time or
frequency-domain measurements. There is an extensive
literature on the topic, and the reader is referred to the mono-
graphs [1–3] for a review of its foundations and engineering
applications.

The focus of this paper is the estimation of an auto-
power spectral density (auto-PSD) function matrix from its
noise corrupted samples. This problem arises, for example,
in the design of linear-shape filters for noise processes

[4–6]. A closely related problem is the estimation of a cross-
power spectral density (cross-PSD) function matrix in
frequency-domain. The cross-spectral analysis is a funda-
mental and powerful technique to investigate an unknown
relationship between two time series in frequency-domain.
It is widely used in many engineering problems; e.g.,
time delay estimation of spatial sensors [7], blind equaliza-
tion in communications [8], analysis of feedback systems
[9], and system identification of mechanical vibration
systems [10].

In [6,11,12], frequency-domain subspace-based identi-
fication algorithms were presented. The main idea behind
these algorithms is to recognize that range space of a
matrix built from frequency-shifted and weighted noise-
free samples of a rational spectrum is exactly the linear
span of the extended observability matrix associated with
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the causal and anti-causal components of the auto-PSD
function matrix in a given state-space realization. This idea
has found applications in the auto and the cross-spectrum
estimation problems [13] and the retrieval of scalar trans-
fer functions from phase measurements [14]. The algo-
rithms proposed in [6,12] use the spectrum measurements
on the uniform grids of frequencies. Furthermore, the
matrix used to extract the observability range space
has a Hankel structure and it is obtained by the inverse
discrete-Fourier transform (IDFT) directly from the spec-
trum samples. Under some mild noise assumptions, these
algorithms are strongly consistent. An extension to the
irregularly spaced frequencies case was reported in [11],
where the strong consistency of the proposed identifica-
tion algorithm was established assuming that the noise
covariance function is known a priori.

The identification algorithms in [6,11–14] determine
the model order by inspecting the singular values of a
matrix used to extract the observability range space. If n is
the true order, then the 2n most significant singular values
and the corresponding left and right singular vectors are to
be retained in order to retrieve the observability range
space. Implicit in this process is the assumption that there
exists a mirror image symmetry with respect to the unit
circle between the eigenvalue sets of the causal and the
anti-causal invariant spaces of a state-transition matrix.
Under this assumption, the causal eigenvalues can be obtained
by a Jordan decomposition. See, [6,11–14] for details and
Step 5 of Algorithm 2.1 in Section 2.

When the signal-to-noise ratio is low, the true spec-
trum is more complex than the assumed one, and when
the data record is short, the singular-value decomposition
(SVD) step is inconclusive since the assumed symmetry
relation between the eigenvalues of the invariant spaces
does not hold. A two-stage identification algorithm was
proposed in [15]. The first stage of this algorithm provides
an initial estimate to a parametric optimization problem
of the second stage by using an asymptotic form of the
subspace identification algorithm proposed in [6]. The
minimum-phase property is guaranteed in the second stage
via the solution of a conic linear programming problem.
This scheme avoids the need to carry out the numerically
sensitive split in [6,11–14].

Nuclear norm optimization methods for structured
low-rank matrix approximation have been discussed in
several recent papers on system identification [16–23]. The
nuclear norm of a matrix-valued function as a convex
heuristic for minimizing its rank was first proposed in [16].
Minimum nuclear norm solutions often have low rank and
in certain applications, for example, low-rank matrix
completion problems, the quality of the heuristic can be
demonstrated analytically [24,25]. This approach preserves
linear structure in matrix approximation unlike the SVD.
Convex constraints or regularization terms in the cost
function are easily accommodated in this framework.
These methods have been primarily developed for Hankel
structured low-rank approximation problems in time-
domain settings. An extension to frequency-domain was
recently made in [19]. In this work, the subspace algorithm
developed in [26] to identify multivariable systems from
measured frequency response at uniformly spaced frequencies

was re-examined from a model validation perspective using a
nuclear norm heuristic.

The contents of this paper are as follows. In Section 2,
frequency-domain auto-PSD estimation via the algorithm
proposed in [12] is reviewed. In Section 3, a variation of
this algorithm based on the regularized nuclear norm
heuristic is presented. This presentation bears similarities
to the study undertaken in [20]. The observability range
space revealing matrix studied in this paper for the
nuclear norm minimization does not have the Hankel
matrix structure in [16–23]. In addition, it is necessary to
include weights to achieve strong consistency. As a by
product, along the same lines of this paper one can derive
regularized nuclear norm variations of the instrumental
variable based subspace algorithms to identify auto-PSD
and cross-PSD function matrices. In Section 4, first a
simulation example is used to demonstrate that the
proposed scheme is effective in determining the order
and the poles of minimal spectral factors over short data
records and insensitive to noise. The next two examples
illustrate application of the proposed scheme to real-life
problems. The first example is concerned with the model-
ing of acoustic spectra for detecting faults in induction
motors. In the second example, we use the proposed
scheme to design a linear-shape filter for random road
excitations. Section 5 concludes the paper.

The derivation of the Cramér–Rao lower bound (CRLB)
on the variance of unbiased spectrum estimators is deferred
to Appendix B where we derive the finite-sample and the
asymptotic CRLBs for first-order spectral factors and noise
filters assuming that the corruptions in the spectrum
measurements are zero-mean real Gaussian white-noise.
In a simulation example, the mean-square errors of the
subspace algorithm and the regularized nuclear norm heur-
istic are compared against the CRLBs. In Appendix C, we
derive the finite-sample CRLB for the fourth-order spectral
factor studied in the simulation example of Section 4 and
the measurement setup in Appendix B and use the CRLB
benchmark to analyze the mean-square and the bias errors
of Algorithm 2.1 and (31). Parallel conclusions to Appendix B
are drawn. A preliminary version of this paper was partly
presented at EUSIPCO 2013 [27].

1.1. Notation

We end this Introduction with remarks on notation.
The letters R and C denote the fields of real and complex
numbers, respectively. Let In denote the n by n identity
matrix. The k by l matrix of zeros is denoted by 0k�l. When
obvious from context, this notation will be omitted. The
(block) diagonal matrix formed from a given sequence of
numbers (matrices) x1;…; xn is denoted by diagðx1;…; xnÞ.
Let XT, X , XH, Re X, Im X denote respectively the transpose,
the complex conjugate, the complex conjugate transpose,
the real and the imaginary parts of a given complex matrix
X. The meaning of the notation X�T or X�H is evident. The
Moore–Penrose pseudo inverse of a given full-column rank
matrix X is defined by X† ¼ ðXHXÞ�1XH . The expected value
of a given random variable x will be denoted by EðxÞ. Let
X � Y denote the Kronecker product of two given matrices
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