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a b s t r a c t

This paper presents a fast and robust method for estimating the starting frequency and
period slope of hyperbolic frequency modulated (HFM) signals. The method involves, first,
the instantaneous frequency (IF) estimation of HFM signals based on the peak of short-
time Fourier transform (STFT) and, second, taking reciprocal of the estimated IF to get the
zero crossing interval (ZCI). Parameter estimation of HFM signals is then achieved by using
iteratively reweighted least squares (IRLS) linear fitting method to fit the ZCI which is a
linear function of time. Both the approximate analysis of the magnitude spectrum and the
formula used to determine the window length of STFT are derived for HFM signals. The
lower bound of the estimator0s variance and bias of the parameters of HFM signals are also
derived in order to compare the performance of the proposed method. At last, both the
simulation results and processing of sea trial data are presented to justify the validity and
feasibility of the proposed method.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The detection of moving target is an important issue in
pulsed radar and sonar system. The most widely adopted
method used to solve moving target detection for pulsed
radar and active sonar is matched filter, however, this
technique is sensitive to the Doppler effect [1]. In addition,
the performance of underwater acoustic communication
also suffers from significant loss if the Doppler effect could
not be effectively handled. Due to the HFM signals’
inherent Doppler-invariant property that the linear and
sinusoid FM signals do not have [2], the HFM signals have
been widely used in pulsed radar and sonar systems for
detecting moving target, especially for the detection of
small target moving at high speed, such as torpedo [3]. The
starting frequency and period slope are two basic char-
acteristic parameters of the HFM signal, once they are

estimated, the HFM signals can be reproduced with the
knowledge of pulse duration, which is important for
confronting pulsed radar, active sonar and underwater
acoustic communication systems. Therefore, it is crucial
to develop a fast and robust method for estimating these
two parameters.

Up to now, there are limited detailed reports about the
parameter estimation for HFM signals. In Ref. [4], two
different methods have been proposed. The first method is
phase unwrapping combined with linear regression. The
variances of the first method attain the Cramer–Rao lower
bounds (CRLBs) at high signal-to-noise ratios (SNRs).
However, the parameter estimation accuracy reduces
drastically with the decrease of SNR. Although the above
problem can be eliminated by adopting the second
method, the calculation load of this method is very huge
as the maximum likelihood estimation (MLE) does not
exist in a closed form for the HFM parameter estimation.
Therefore, two-dimensional (2-D) grid search is needed,
and the parameter estimation accuracy depends on the
accuracy of 2-D search. In Refs. [5–7], the HFM parameters
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are estimated via a nonlinear least-square (NLS) match-
ing approach. The NLS matching approach, similar to the
second method proposed in Ref. [4], is proved to be very
computationally intensive.

The starting frequency and period slope of the non-
stationary HFM signals are included in the expression of
the IF curve. Therefore, if the IF of the HFM signal can be
obtained, these two parameters can be further estimated
accordingly. Methods for estimating IF such as phase
difference estimators and smoothing thereof, zero cross-
ing-base, adaptive methods and time–frequency distribu-
tions (TFD)-based techniques were reviewed in Ref. [8].
Among those methods, the TFD-based techniques have
received considerable attention recently. The TFD-based IF
estimation techniques are mainly based on the peak of TFD
[9–15]. In Ref. [9], the proposed approach, combining the
TFD and modified version of Hough transform (HT), can be
used to estimate the parameters of HFM signals. However,
limitations arise as the IF of HFM signal is very intricate to
transform into a parameters space of HT. In Ref. [10], image
processing techniques were used in the TFD to estimate
the IF of HFM signals. However, it is very computationally
intense because a repeated TF peak filtering preprocessing is
needed in this technique. In Ref. [11], the confidence intervals
(ICI) rule was used to estimate the IF. To minimize the mean
squared error, a large amount of computation is needed to
choose an appropriate window width from a set of windows.
In Refs. [12–15], the complex-time distribution (CTD) has been
proposed. The CTD, capable of estimating highly-varying
nonlinear IFs [13], can be defined as the convolution between
the Wigner distribution (WVD) of the signal and the Fourier
transform (FT) of the complex-lag concentration function in
the frequency domain [14,15]. It is easy to know that the
computation load for WVD is much larger than the STFT [16],
so the CTD needs much more calculation than the STFT.

The main goal of this paper is to develop a fast and robust
method for parameter estimation of HFM signals. The pro-
posedmethod combines the advantages of both STFT and IRLS
linear fitting. The STFT, less sensitive to the noise influence
than the higher-order techniques, such as WVD [17], can be
achieved by fast Fourier transform (FFT). The FFT represents a
very efficient and commonly applied approach. The proposed
method estimates the IF of HFM signals based on the peak of
STFT first. The window length of the STFT is invariable leading
to a poor time–frequency resolution [18]. However, as long as
the estimated IF of the HFM signals can keep its hyperbolic
characteristics, the parameters of the HFM signals can be
further estimated. Because of the facts that the IF of the HFM
signal is a hyperbolic function of time, it is hard to estimate
the parameters of HFM signals directly from the IF. On the
other hand, the ZCI, obtained by taking reciprocal of the
estimated IF, is a linear function of time, so parameters
estimation of HFM signals can be achieved by linear fitting
of the ZCI. Owing to the signal distortion caused by the ocean
ambient noise and multipath propagation through under-
water acoustic channel, there exist outliers in the estimated IF.
The IRLS linear fitting method proposed in Ref. [19] is
improved to fit the ZCI. The improved IRLS linear fitting
method, independent of the absolute value of the estimated
ZCI, can overcome the impact of outliers on the parameter
estimation accuracy.

The rest of the paper is organized as follows. In Section 2,
the proposed parameter estimation method is described and
the formula for determining the window length of STFT is
also derived. In Section 3, the lower bounds of the
estimator0s variance and bias are derived for the starting
frequency and period slope of the HFM signals. In Section 4,
computer simulations, calculation complexity analysis and
processing of the real sea trial data are carried out to analyze
the performance of the estimator. Finally, conclusions are
reported in Section 5.

2. Parameter estimation method

2.1. Signal model and basic characteristics

The complex form of HFM signal is defined by [3]

sðtÞ ¼ AexpfjφðtÞg ¼ Aexp j � 2π
k0

lnð�k0tþ1=f 1Þ
� �� �

; 0otoτ

ð1Þ
where A is the magnitude, φðtÞ is the instantaneous phase
(IP), f 1 is the starting frequency, τ, set to be known in
advance, is the pulse duration and k0 is a constant factor
defined as period slope, given by k0 ¼ ðf 2� f 1Þ=ðτf 1f 2Þ,
where f 2 represents the end frequency.

In a discrete time system, Eq. (1) can be expressed as

sðnÞ ¼ Aexp j � 2π
k0

lnð�k0nTsþ1=f 1Þ
� �� �

; n¼ 0;1;2…N�1

ð2Þ
where Ts is the sampling interval, its reciprocal f s is the
sampling frequency and N¼ intðτf sÞ.

The sampled discrete-time HFM signal embedded in
white Gaussian noise is modeled as

zðnÞ ¼ sðnÞþwðnÞ; n¼ 0;1;2…N�1 ð3Þ
where fwðnÞg is an independent and identically distributed
sequence of complex Gaussian random variables with zero
mean and variance s2. Estimating the parameters of the
HFM signals using a nonlinear least-squares (NLS) approach
in [5–7] is given by

ðf̂ 1; k̂0Þ ¼ arg min
ðf nls ;knlsÞ

∑
N

n ¼ 1
zðnÞ
��

�Aexp j � 2π
knls

lnð�knlsnTsþ1=f nlsÞ
� �� �����

2

ð4Þ

where f nls and knls are the predictive parameters of the NLS
approach for estimating the parameters of HFM signals.
Eq. (4) can be simplified into

ðf̂ 1; k̂0Þ ¼ arg max
ðf nls ;knlsÞ

∑
N

n ¼ 1
zðnÞexp j

2π
knls

lnð�knlsnTsþ1=f nlsÞ
� �� �����

����
ð5Þ

It is worth noting that the quantity to be maximized
does not depend on A. However, the objective function in
Eq. (5) is nonlinear in f nls and knls, there exist no analytical
solutions. Therefore, numerical techniques have to be
used. The solution for such NLS problems may present
the following two difficulties:

(1) Exhaustive search may be very time consuming.
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