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a b s t r a c t

This paper is motivated by the problem of integrating multiple sources of measurements.
We consider two multiple-input–multiple-output (MIMO) channels, a primary channel
and a secondary channel, with dependent input signals. The primary channel carries the
signal of interest, and the secondary channel carries a signal that shares a joint
distribution with the primary signal. The problem of particular interest is designing the
secondary channel matrix, when the primary channel matrix is fixed. We formulate the
problem as an optimization problem, in which the optimal secondary channel matrix
maximizes an information-based criterion. An analytical solution is provided in a special
case. Two fast-to-compute algorithms, one extrinsic and the other intrinsic, are proposed
to approximate the optimal solutions in general cases. In particular, the intrinsic algorithm
exploits the geometry of the unit sphere, a manifold embedded in Euclidean space. The
performances of the proposed algorithms are examined through a simulation study.
A discussion of the choice of dimension for the secondary channel is given.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following two-channel system, as illustrated
in Fig. 1,

x¼ Fθþu

y¼ Gϕþv: ð1Þ

The first channel is the primary channel that carries the
signal of interest θ. The secondary channel carries a signal ϕ
that shares a joint distribution with θ. The measurements x
and y are linear transformations of the input signals with
measurement noises u and v, respectively. For example, the
elements of the primary signal θ may be the complex
scattering coefficients of several radar-scattering targets
and the elements of the secondary signal ϕ may be inten-
sities in an optical map of these same optical-scattering
targets. The measurement x is then a range-doppler map and
the measurement y is an optical image. Under a certain

power constraint, we consider the design of the channel
matrix G (or the precoder matrix assuming identity channel),
with the primary channel fixed. This problem is an abstrac-
tion of the quite general problem of adding a new sensor
suite (or communication channel) to an existing suite. The
question is whether the added performance gain warrants
the expense. The only constraint in this abstraction is that
both channels are linear. Examples include cooperative radar,
bistatic radar, radar plus optical, and so on. The application of
this abstract model to a physical problem requires only the
determination of the design problems of this paper. Notice
that if both channels were to be designed, then a Gauss–
Seidel iteration could be used, as follows:

Step 0: Initialize;
Step 1: Fix the secondary channel and update the primary

channel. Then go to Step 2;
Step 2: Fix the primary channel, update the secondary

channel. Return to Step 1.

The solution for step 1 can be found in many classical
precoder design problems in the literature. The solu-
tion for step 2 would be based on the results in this paper.
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This iterative procedure would guarantee a non-
decreasing information rate and the results would con-
verge to a local optimal solution. In the scope of this paper,
we focus only on step 2, as channel one is fixed.

Various criteria have been studied for MIMO channel
design problems. For example, signal-to-noise ratio (SNR)
and signal-to-interference-noise ratio (SINR) [3,4], mutual
information [5–8], and (weighted) minimum mean square
error (MMSE) [9–11]. The criterion we use in this paper is the
mutual information between the primary source signal and
the measurements x and y. In the multivariate normal case,
this is maximized by minimizing the log-determinant of the
error covariance for the MMSE estimator. Without the
assumption of multivariate normality, the determinant
remains the volume of the error concentration ellipsoid. This
volume is a scalar measure of how good this ellipsoid is. When
the volume is small, estimates may be expected to lie near the
true value of the source vector. Moreover, this information-
based criterion is connected with estimation theory in a
channel with Gaussian noise and arbitrary source distribution
by linking the mutual information with MMSE, as in [12,13].

The linear precoding design for single or multiple
MIMO channels has been studied in the literature (see
[1–11] and references therein). While most of the work
considered single or mutually independent sources, Fang
et al. [1], Tang and Hua [2] have considered the joint
precoder design with correlated sources signals. In the
work of [1,2], both sources are of interest and the pre-
coders are designed jointly to recover both source signals.
In our problem, the secondary channel contains an aux-
iliary source and our interest focusses on the primary
source. This makes our work different from prior work.
That is, we have a one-channel design in a two-channel
system, rather than a one-channel design or a two-channel
design. The resulting precoder for the auxiliary channel
does not maximize the differential rate at which it brings
information about the auxiliary source, but it does max-
imize the differential rate at which the two channels bring
information about the primary source.

Zhang et al. [28–29] have derived a suboptimal pre-
coding matrix by a sequence of vector-variate optimization
problems that maximizes the information gain brought by
each row of the precoding matrix. Our matrix-variate
problem, however, is more complex and in general, is
not a convex problem. Moreover, this problem cannot be
formulated as an SVD problem [21], in contrast to the one-
channel system design. Analytical solutions are derived for
some special cases. For general cases, we propose two
gradient-based algorithms, one extrinsic and the other
intrinsic, to approximate the optimal channel matrix.

The extrinsic algorithm is a gradient-ascent algorithm
with projection to the constrained space [15]. The intrinsic
algorithm, a gradient-ascent algorithm of manifold,
exploits the geometry that codes for the power constraint
by vectorizing the channel matrix, [16–20]. Extrinsic and
intrinsic algorithms are not entirely new. Our contribution
is to implement a manifold optimization for our problem
by exploiting the geometry of the power constraint.

The rest of the paper is organized as follows. We formu-
late the channelization problem in Section 2 and point out the
challenges for design in a two-channel system. In Section 3,
we give an analytical solution when the conditional covar-
iance of ϕ given θ is the identity matrix. In Section 4, we
propose two numerical algorithms, the extrinsic and intrinsic
gradient searches, to approximate the optimal channel matrix
for general cases. A simulation study is presented to illustrate
the performance of the proposed algorithms in Section 4.3. In
Section 5, we discuss the choice of number of measurements
for the secondary channel. Section 6 concludes the paper.

Notation: The set of length m real vectors is denoted by
Rm and the set of m� n real matrices is denoted by Rm�n.
Bold upper case letters denote matrices, bold lower case
letters denote column vectors, and italics denote scalars.
The scalar xi denotes the ith element of vector x, and X i;j

denotes the element of X at row i and column j. The
diagonal matrix with diagonal elements x is denoted as
DiagðxÞ. The n� n identity matrix is denoted by In. The
transpose, inverse, trace and determinant of a matrix are
denoted by ð�ÞT , ð�Þ�1, trð�Þ and detð�Þ, respectively.

A covariance matrix is denoted by bold upper case Q
with specified subscripts: Qzz denotes the covariance
matrix of a random vector z; Qz1z2 is the cross-covariance
matrix between z1 and z2; Qz1z1jz2 is the conditional
covariance matrix of z1 given z2.

2. Overview

2.1. Problem statement

The two channels of the system described in (1) have input
signals θARp and ϕARq, respectively. The signal θ is of key
interest and ϕ is a secondary signal that is jointly distributed
with θ. The first channel xARs is a direct measurement of θ,
while the secondary channel yARt is an indirect measure-
ment of θ through ϕ. Both x and y contain information about
θ, and one can expect that fusing measurements from both
channels would provide a better estimate than using a single
measurement. Our interest is to design the channel matrix G,
with the first channel fixed, such that the rate at which x and
y bring information about θ is maximized.

We make the following assumptions:

(a1) The signals θARp and ϕARq are jointly Gaussian
distributed as

θ

ϕ

 !
�N

μθ
μϕ

 !
;

Q θθ Q θϕ

Qϕθ Qϕϕ

 ! !
:

Here Q θθ, Qϕϕ are the positive definite covariance for
θ and ϕ, Q θϕ is the cross covariance between θ and ϕ.

Fig. 1. A two-channel system with two linear channels.
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