
Robust weighted fusion Kalman filters for multisensor
time-varying systems with uncertain noise variances

Wenjuan Qi, Peng Zhang, Zili Deng n

Department of Automation, Heilongjiang University, Harbin 150080, PR China

a r t i c l e i n f o

Article history:
Received 14 June 2013
Received in revised form
5 December 2013
Accepted 10 December 2013
Available online 3 January 2014

Keywords:
Multisensor data fusion
Weighted fusion
Covariance intersection (CI) fusion
Weighted measurement fusion
Minimax robust Kalman filter
Uncertain noise variance

a b s t r a c t

This paper addresses the design of robust weighted fusion Kalman filters for multisensor
time-varying systems with uncertainties of noise variances. Using the minimax robust
estimation principle and the unbiased linear minimum variance (ULMV) optimal estima-
tion rule, the five robust weighted fusion time-varying Kalman filters are presented based
on the worst-case conservative systems with the conservative upper bounds of noise
variances. The actual filtering error variances or their traces of each fuser are guaranteed
to have a minimal upper bound for all the admissible uncertainties of noise variances.
A Lyapunov equation approach is presented to prove the robustness of the robust Kalman
filters. The concept of robust accuracy is presented and the robust accuracy relations
among the local and fused robust Kalman filters are proved. Specially, the corresponding
steady-state robust local and fused Kalman filters are also presented for multisensor time-
invariant systems, and the convergence in a realization of the local and fused time-varying
and steady-state Kalman filters is proved by the dynamic error system analysis (DESA)
method and dynamic variance error system analysis (DVESA) method. A simulation
example is given to verify the robustness and robust accuracy relations.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multisensor data fusion has been received great atten-
tion in recent years and widely applied in many fields
including, tracking, communications, signal processing
and GPS positioning. The main aim of data fusion is how
to combine the local measurement data or local state
estimators of multisensor systems to obtain a fused state
estimator, whose accuracy is higher than that of each
local state estimator [1]. There exist two kinds of fusion
methods. The first one is the centralized fusion method
where all measured sensor data are communicated to the
fusion center, and the obtained state estimator is globally
optimal in the sense of unbiased linear minimum variance
(ULMV) [2]. Its disadvantage is that the computation and

communication burden is larger. The second method is the
distributed fusion, which can give the globally optimal [3–
5] or suboptimal state estimator [6–8]. Under the ULMV
rule, there are three weighted distributed fusion algor-
ithms weighted by matrices, diagonal matrices and scalars
respectively [6–8]. Based on the weighted least squares
method, two weighted measurement fusion algorithms
are also presented [9–13], which have the globally optim-
ality [13]. The distributed fusion method can reduce the
computation and communication burden and can facilitate
fault detection and isolation more conveniently.

The basic tool of multisensor data fusion is the Kalman
filtering method. The Kalman filter is designed based on
the assumptions that the system model and noise var-
iances are exactly known. When the model parameters
and/or noise variances exist uncertainties, the perfor-
mance of the Kalman filter may be degraded or an inexact
model may cause the filter divergence [14]. This has
motivated many studies of designing robust Kalman filters.
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A class of robust Kalman filtering problems is to design a
Kalman filter such that its actual filtering error variances
or their traces are guaranteed to have a minimal upper
bound for all admissible uncertainties [15].

In order to design the robust Kalman filters for the
systems with the model parameters uncertainties, two
important approaches are the Riccati equation approach
[15–18] and the linear matrix inequality (LMI) approach
[15,19,20]. The asymptotic properties of the time-varying
(finite-horizon) robust Kalman filters and the steady-state
(infinite-horizon) robust Kalman filters were investigated
in [17,21,22], where the rigorously convergence analysis
between the steady-state robust Kalman filter and
the time-varying robust Kalman filter was not solved.
These designs of robust Kalman filters have the limitation
that only the uncertainties of model parameters are
considered, while the noise variances are assumed to be
exactly known.

So far, the robust Kalman filter for systems with
uncertain noise variances are seldom considered [23],
and the multisensor information fusion robust Kalman
filtering is seldom concerned [24–26], and the robustness
of the fusers is not rigorously proved.

In this paper, we consider the problem of the robust
Kalman filtering for multisensor time-varying systems
with uncertain noise variances. Using the minimax robust
estimation principle [23,27,28] and ULMV optimal estima-
tion rule, the local robust time-varying Kalman filters and
three fused robust time-varying Kalman filters weighted
by matrices, diagonal matrices and scalars are respectively
presented based on the worst-case conservative systems
with the conservative upper bounds of noise variances. In
order to compute the weights, the cross-covariances
among the local filtering errors are required. However,
in many theoretical and practical applications, the compu-
tation of the cross-covariances is very difficult and com-
plicated [29,30], or the cross-covariances are unknown
[31–33].

In order to overcome this limitation, based on the
covariance intersection (CI) fusion method [31–33], the
CI fusion robust time-varying Kalman filter is presented in
this paper, it can be obtained by convex combination of the
local robust Kalman filters and is converted into an
optimization problem of a nonlinear function with con-
straints. Compared with the above three weighted fusion
robust time-varying Kalman filters, it avoids the computa-
tion of cross-covariances, and suitable for multisensor
systems with unknown variances and cross-covariances
of the local filters.

Based on the weighted least squares [34], the robust
weighted measurement fusion time-varying Kalman filter
is also presented, which is equivalent to the centralized
robust Kalman fuser [13].

Furthermore, a Lyapunov equation approach is pre-
sented to prove the robustness of the proposed robust
Kalman filters, which is completely different from the
Riccati equation approach and the LMI approach. The
concept of robust accuracy is presented for uncertain
systems. The robust accuracy relations of the local and
weighted fusion robust Kalman filters are proved. Specially,
the corresponding robust local and fused time-varying and

steady-state Kalman filters are presented for multisensor
time-invariant systems with uncertain noise variances, and
their convergence in a realization is rigorously proved by
the dynamic error system analysis (DESA) method and the
dynamic variance error system analysis (DVESA) method
[35,36].

The remainder of this paper is organized as follows:
Section 2 gives the problem formulation. The local robust
time-varying Kalman filter and the proof of the robustness
are presented in Section 3. The five weighted fusion robust
time-varying Kalman filters together with their proof of
the robustness are given in Section 4. The robust accuracy
analysis of the local and weighted fusion robust Kalman
filters is presented in Section 5. The robust local and fused
steady-state Kalman filters and the convergence analysis
are presented in Section 6. Section 7 gives a simulation
example. The conclusions are presented in Section 8.

2. Problem formulation

Consider the following multisensor linear discrete
time-varying systems with uncertain noise variances:

xðtþ1Þ ¼ΦðtÞxðtÞþΓðtÞwðtÞ ð1Þ

yiðtÞ ¼HiðtÞxðtÞþviðtÞ; i¼ 1;⋯; L ð2Þ
where t represents the discrete time, xðtÞARn is the state,
yiðtÞARmi is the measurement of the ith subsystem,
wðtÞARr is the input noise, viðtÞARmi is the measurement
noise of the ith subsystem, ΦðtÞ, ΓðtÞ and HiðtÞ are known
time-varying matrices with appropriate dimensions. L is
the number of sensors.

Assumption 1. wðtÞ and viðtÞ are uncorrelated white
noises with zero means and unknown uncertain actual
variances Q ðtÞ and RiðtÞ at time t, respectively, satisfying

Q tð ÞrQ tð Þ;Ri tð ÞrRi tð Þ; i¼ 1;⋯; L; 8t ð3Þ
where Q ðtÞ and RiðtÞ are known conservative upper bounds
of Q ðtÞ and RiðtÞ, respectively, and

Ε
wðtÞ
viðtÞ

 !
ðwðkÞ vjðkÞ ÞΤ

" #
¼

Q ðtÞ 0
0 RiðtÞδij

" #
δtk ð4Þ

where E is the mathematical expectation operator, the
superscript T is the transpose. δij is the Kronecker δ
function, δii ¼ 1; δij ¼ 0ðia jÞ.
Assumption 2. The initial state xð0Þ is independent of wðtÞ
and viðtÞ and has mean value μ and unknown uncertain
actual variance Pð0j0Þ which satisfies

Pð0j0ÞrPð0j0Þ ð5Þ
where Pð0j0Þ is a known conservative upper bound of
Pð0j0Þ.

The so-called robust Kalman filtering problem is to
design a Kalman filter x̂ðtjtÞ for uncertain system (1) and
(2), such that its actual filtering error variances P tjtð Þ or
their traces trPðtjtÞ have a minimal upper bound PðtjtÞ or
trPðtjtÞ for all admissible uncertainties satisfying (3) and
(5) [15], i.e.,

Pðt=tÞrPðt=tÞ or trPðt=tÞrtrPðt=tÞ ð6Þ
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