
Sampling theorems in function spaces for frames associated
with linear canonical transform

Jun Shi a,n, Xiaoping Liu a,nn, Qinyu Zhang b, Naitong Zhang a,b

a Communication Research Center, Harbin Institute of Technology, Harbin 150001, China
b Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China

a r t i c l e i n f o

Article history:
Received 31 January 2013
Received in revised form
22 August 2013
Accepted 12 November 2013
Available online 23 November 2013

Keywords:
Linear canonical transform
Frames
Riesz bases
Function spaces
Sampling theorem

a b s t r a c t

The linear canonical transform (LCT) has proven to be a powerful tool in optics and signal
processing. Most existing sampling theories of this transform were derived from the LCT
band-limited signal viewpoint. However, in the real world, many analog signals encoun-
tered in practical engineering applications are non-bandlimited. The purpose of this paper
is to derive sampling theorems of the LCT in function spaces for frames without band-
limiting constraints. We extend the notion of shift-invariant spaces to the LCT domain and
then derive a sampling theorem of the LCT for regular sampling in function spaces with
frames. Further, the theorem is modified to the shift sampling in function spaces by using
the Zak transform. Sampling and reconstructing signals associated with the LCT are also
discussed in the case of Riesz bases. Moreover, some examples and applications of the
derived theory are presented. The validity of the theoretical derivations is demonstrated
via simulations.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The linear canonical transform (LCT) [1] is also known as
ABCD transform, generalized Fresnel transform, generalized
Huygens integral, affine Fourier transform, and quadratic
phase systems. Many signal processing operations, such as
the Fourier transform (FT), the fractional Fourier transform
(FRFT), the Fresnel transform, and the scaling operations are
special cases of this transform. The LCT has proven to be a
powerful tool for optical systems, gradient-index medium
system analysis, filter design, time–frequency analysis, radar
system analysis, pattern recognition, communications, and
many others [2–14]. The continuous-time LCT of a signal or

function, f ðtÞAL2ðRÞ, is defined as [2]

FMðuÞ ¼LMff ðtÞgðuÞ ¼
R
R
f ðtÞKMðu; tÞ dt; ba0ffiffiffi
d

p
eðjcd=2Þu

2
f ðduÞ; b¼ 0

(
ð1Þ

where LM denotes the LCT operator, and kernel KMðu; tÞ is
given by

KMðu; tÞ ¼ Abe
ðja=2bÞt2 þðjd=2bÞu2 �ðj=bÞut ð2Þ

where M¼ ða;b; c; dÞ, a; b; c; dAR satisfying ad�bc¼ 1, and
Ab ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
j2πb

p
. The u-axis is regarded as the LCT domain. In

general, we only consider the case of ba0, since the LCT
with b¼0 is just a chirp multiplication operation. Conversely,
the inverse LCT is expressed as f ðtÞ ¼ R

R
FMðuÞKn

Mðu; tÞ du,
where n in the superscript denotes the complex conjugate.

In digital signal and image processing, digital communica-
tions, etc., a continuous signal is usually represented by its
discrete samples. A natural question is how to represent a
continuous signal in terms of a discrete sequence. For a band-
limited signal, Stern [15] found a Shannon-type sampling
theorem associated with the LCT, which provides an exact
representation by the signal's uniform samples with sampling
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rate higher than its Nyquist rate. Although Stern's sampling
theory has had an enormous impact [16–22], it has a number
of problems: It relies on the use of ideal filters; the bandlim-
ited hypothesis is in contradiction with the idea of a finite
duration signal; the bandlimiting operation generates Gibbs
oscillations, and finally, the sinc function has a very slow
decay rate at infinity such that the computation in the signal
domain is very inefficient. Moreover, many applied problems
impose different a priori constraints on the type of signals.
For these reasons, the sampling and reconstruction problems
associated with the LCT have been investigated in function
spaces. In [23], Liu et al. established sampling formulae of the
LCT for non-bandlimited signals by introducing certain types
of non-bandlimited function spaces. Unfortunately, as pointed
out by authors of [23], there are no normative rules for
determining the parameters of the non-bandlimited function
spaces in practical implementations at present.

In our recent paper [24], we proposed a sampling theorem
for the LCT in some function space of the form VMðϕÞ ¼
spanL2 fϕðt�nÞe�ðja=2bÞðt2 �n2ÞgnAZ without band-limiting con-
straints, which can provide a suitable and realistic model of
sampling and reconstruction for real applications. However,
the results were derived for Riesz bases. The contributions of
this paper, compared to our previous work, are threefold:

(1) We derive some properties of the function space VMðϕÞ
with frame generators, which extend conventional
shift-invariant spaces.

(2) We establish a sampling theorem of the LCT for regular
sampling in VMðϕÞ with frames. Then, the theorem is
modified to the shift sampling in VMðϕÞ by using the
Zak transform.

(3) Some necessary conditions for sampling in the LCT
domain are established in frame sense and in Riesz
basis sense.

The outline of this paper is organized as follows. Section 2
introduces notation and then gives a generalization of
the Zak transform in the LCT domain. Section 3 presents
some properties of the function spaces related to the LCT
and then derives a sampling theorem for the LCT in the
function spaces with frames. Further, a shift-sampling
theorem for the LCT is established by using the Zak
transform. In addition, some relationships and properties
about the relevant functions for sampling in the LCT
domain are attained in frame sense and in Riesz basis
sense. Some examples and applications of the derived
results are also discussed. Finally, concluding remarks are
given in Section 4.

2. Preliminaries

2.1. Notation

For a measurable function f(t) on R, let

J f ðtÞJ1 ¼ ess supjf ðtÞj and J f ðtÞJ0 ¼ ess inf jf ðtÞj ð3Þ

be the essential supremum and infimum of jf ðtÞj, respec-
tively. The characteristic function of a measurable subset

E�R is given by

χEðtÞ ¼
1; tAE

0 otherwise:

�
ð4Þ

2.2. A generalization of the Zak transform associated
with the LCT

One of the important tools used in the study of sampling
theory is the Zak transform (ZT) [27]. Here, we give a
generalization of the ZT associated with the LCT, which will
be used in this paper.

The ordinary ZT can be defined in terms of the time-
shift operator Tτ as

Zf s;ωð Þ ¼ 1ffiffiffiffiffiffi
2π

p ∑
nAZ

T�sfð Þ nð Þe� jωn ð5Þ

where Tτ is given by ðTτf Þð�Þ9 f ð��τÞ. Since the canonical
time-shift operator TM

τ [13] generalizes the ordinary one
Tτ , it naturally lends itself to defining a linear canonical ZT
(LCZT), i.e.,

ZM
f ðs;uÞ ¼ ∑

nAZ

ðTM
�sf ÞðnÞKMðu;nÞ ð6Þ

where ðTM
τ f Þð�Þ9 f ð��τÞe�ðja=bÞτð�� τ=2Þ [13]. Whenever

M¼ ð0;1; �1;0Þ, (6) reduces to the ordinary ZT. If s¼ 0,
(6) is identical with the discrete-time LCT (DTLCT) defined
in (6) of [24].

3. Main results

3.1. Sampling in function spaces for frames associated
with the LCT

For any function ϕðtÞAL2ðRÞ, let fϕðt�nÞgnAZ be a set of
functions from L2ðRÞ and VðϕÞ ¼ spanL2 fϕðt�nÞg the closed
subspace of L2ðRÞ spanned by fϕðt�nÞgnAZ. From [25],
the basic principle behind the conventional shift-invariant
space VðϕÞ is that if f ðtÞAVðϕÞ, then ðTτf ÞðtÞA VðϕÞ for all
τAZ. Similarly, the subspace VMðϕÞ ¼ spanL2 fϕðt�nÞ
e�ðja=2bÞðt2 �n2ÞgnAZ of L2ðRÞ constructed in [24] has a fol-
lowing basic property:

f ðtÞAVMðϕÞ3ðTM
τ f ÞðtÞAVMðϕÞ ð7Þ

for all τAZ, where TM
τ is defined in (6). Whenever

M¼ ð0;1; �1;0Þ, VMðϕÞ and TM
τ reduces to VðϕÞ and Tτ ,

respectively. Clearly, VðϕÞ is just a special case of VMðϕÞ,
and the relationship between them is given by

f ðtÞAVMðϕÞ3 f ðtÞeðja=2bÞt2 AVðϕÞ: ð8Þ
Consequently, fϕn;MðtÞ9ϕðt�nÞe�ðja=2bÞðt2 �n2ÞgnAZ

is a frame
or a Riesz basis for VMðϕÞ if and only if fϕðt�nÞgnAZ is a
frame or a Riesz basis for VðϕÞ. For simplicity, let

Gϕ;M uð Þ ¼ ∑
kAZ

Φ
u
b
þ2kπ

� ���� ���2 ð9Þ

whereΦðu=bÞdenotes theFT(with itsargumentscaledby1=b)
of ϕðtÞ. It is easy to see that Gϕ;MðuÞ ¼ Gϕ;Mðuþ2πbÞ,
and Gϕ;MðuÞAL1ðIÞ where I 9 [0,2pb] . Also, let Eϕ;M9
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