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a b s t r a c t

The fractional Fourier transform (FRFT), a generalization of the Fourier transform, has proven
to be a powerful tool in optics and signal processing. Most existing sampling theories of the
FRFT consider the class of band-limited signals. However, in the real world, many analog
signals encountered in practical engineering applications are non-bandlimited. The purpose
of this paper is to propose a sampling theorem for the FRFT, which can provide a suitable and
realistic model of sampling and reconstruction for real applications. First, we construct a
class of function spaces and derive basic properties of their basis functions. Then, we
establish a sampling theoremwithout band-limiting constraints for the FRFT in the function
spaces. The truncation error of sampling is also analyzed. The validity of the theoretical
derivations is demonstrated via simulations.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The fractional Fourier transform (FRFT), which gener-
alizes the Fourier transform (FT), has received much
attention in recent years due to its numerous applications
[1–5], including in the areas of optics, signal and image
processing, communications, etc. The FRFT of a continuous
signal or function f(t) is defined as [2]

FαðuÞ ¼F αff ðtÞgðuÞ ¼
Z
R

f ðtÞKαðu; tÞ dt ð1Þ

where F α denotes the FRFT operator, and kernel Kαðu; tÞ is
given by

Kαðu; tÞ ¼
Aαeðjðu

2 þ t2Þ=2Þ cot α� jut csc αÞ; αakπ

δðt�uÞ; α¼ 2kπ
δðtþuÞ; α¼ ð2k�1Þπ

8><
>: ð2Þ

where Aα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� j cot αÞ=2π

p
, kAZ, cot α¼ cos α= sin α,

and csc α¼ 1= sin α. For αA ½�π; π�, the square root factor
Aα can be rewritten without ambiguity as [1]

Aα ¼
e
� j

α

2
�
π

4
sgn αð Þ

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πj sin αj

p ð3Þ

where sgnð�Þ denotes the sign function. When α is outside
the interval ½�π; π�, we simply need to replace α by its
modulo 2π equivalent lying in this interval and use this
value in (3). The u axis is regarded as the fractional Fourier
domain. The inverse FRFT with respect to angle α is
the FRFT with angle �α, i.e., f ðtÞ ¼F �αfFαðuÞgðtÞ ¼

R
R
FαðuÞ

Kn

αðu; tÞ du, where n in the superscript denotes the com-
plex conjugate. In general, we only consider the case of
0oαoπ, since the definition can easily be extended out-
side the interval ½0; π� by noting that F 2πn is the identity
operator for any integer n and that the FRFT operator is
additive in angle, i.e., F α1 þα2 ¼F α1F α2 . Whenever α¼ π=2,
(1) reduces to the FT given by

F ωð Þ ¼Fff tð Þg ωð Þ ¼ 1ffiffiffiffiffiffi
2π

p
Z
R

f tð Þe� jωt dt ð4Þ
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with f ðtÞAL1ðRÞ⋂L2ðRÞ, where F indicates the FT operator.
Conversely, the inverse FT is written as f ðtÞ ¼ ð1=

ffiffiffiffiffiffi
2π

p
ÞR

R
FðωÞejωt dω. It follows that the FRFT exists, for α not

multiple of π, whenever the FT of f ðtÞeðj=2Þt2 cot α exists.
Since the complex exponent in (2) has a constant magni-
tude, the FRFT can also be defined in most domains in
which the FT can be defined.

In digital signal and image processing, digital commu-
nications, etc., a continuous signal is usually represented
by its discrete samples. Then, a fundamental problem of
FRFT theory is how to represent a continuous signal in
terms of a discrete sequence. For a fractional band-limited
signal f(t), Xia [6] found a Shannon-type sampling theorem
for the FRFT. In particular, the sampling process of this
theorem for a π sin α-fractional bandlimited signal can be
viewed as an approximation procedure in the space of
fractional band-limited functions:

Bα ¼ ∑
nAZ

f ½n�sincðt�nÞe� jððt2 �n2Þ=2Þ cot αjf ½n�Aℓ2ðZÞ
��

ð5Þ

where sincð�Þ9 sin πð�Þ=πð�Þ. Xia's sampling theorem pro-
vides an exact representation by the signal's uniform
samples ff ½n�gnAZ and has been currently generalized to
many other forms. Zayed and García derived a new
sampling expansion using the Hilbert transform in [7]. In
[8], Stern extended Xia's result to the generalized form of
the FRFT, which is called the linear canonical transform [1].
Tao et al. discussed sampling and sampling rate conversion
of band-limited signals in the fractional Fourier domain in
[9]. Bhandari and Marziliano [10] proposed a uniform
sampling and reconstruction algorithm for sparse signals
in the fractional Fourier domain. Furthermore, authors in
[11,12] studied multi-channel sampling for the FRFT.
However, these extensions and modifications of Xia's
sampling theorem [6] were derived from the band-
limited signal viewpoint. In the real world, many analog
signals encountered in practical engineering applications
are non-bandlimited. Recently, Liu et al. [13] introduced
new sampling formulae of the generalized FRFT for non-
bandlimited signals by constructing a class of function
spaces Bh;m

M;ΩM
ðm¼ 1;2;3Þ. Unfortunately, as the authors of

[13] pointed out, there are no normative rules at present
for determining the parameters M, h, ΩM in practical
implementations.

The purpose of this paper is to propose a sampling
theorem associated with the FRFT, which can provide a
suitable and realistic model of sampling and reconstruc-
tion for real applications. First, we introduce a class of
function spaces with a single generator and derive basic

properties of their basis functions. Then, we derive a
sampling theorem for the FRFT in the function spaces.
Moreover, the truncation error of sampling and some
potential applications of the derived results are presented.
The validity of the theoretical derivations is demonstrated
via simulations.

The outline of this paper is organized as follows. In
Section 2, notations and some facts for the FRFT are first
introduced, and then the concept of fractional convolution
is given. In Section 3, a sampling theorem for the FRFT
without band-limiting constraints is established, and
the truncation error of sampling and some potential
applications are also discussed. Finally, concluding
remarks are given in Section 4.

2. Preliminaries

2.1. Notation

Throughout this paper, we consider real-valued signals.
Continuous signals are denoted with parentheses, e.g., f(t),
tAR, and discrete signals with brackets, e.g., c½n�, nAZ. We
denote the inner L2-product between f(t) and g(t) by

〈f ; g〉L2 ¼
Z
R

f ðtÞgnðtÞ dt; ð6Þ

and the ℓ2-inner product between two sequences c½n� and
d½n� by

〈c; d〉ℓ2 ¼ ∑
nAZ

c½n�dn½n�: ð7Þ

Correspondingly, we denote the L2-norm by ‖f ‖2
L2
¼ 〈f ; f 〉L2 ,

and the ℓ2-norm by ‖c‖2ℓ2 ¼ 〈c; c〉ℓ2 .
Let H be a Hilbert space and fφnðtÞgnAZ be a complete

set of functions in H. The set is a Riesz basis for H if and
only if there exist constants 0oArBoþ1 such that [14]

A‖c½n�‖2ℓ2 r ∑
nAZ

c½n�φnðtÞ
����

����
2

L2
rB‖c½n�‖2ℓ2 ; 8c½n�Aℓ2ðZÞ

ð8Þ

with equality if and only if the basis is orthonormal, i.e.,
when A¼ B¼ 1.

For a measurable function f(t) on R, let ‖f ðtÞ‖1 ¼
ess supjf ðtÞj and ‖f ðtÞ‖0 ¼ ess inf jf ðtÞj be the essential
supremum and infimum of jf ðtÞj, respectively.

Nomenclature

FT Fourier transform
DTFT discrete-time Fourier transform
FRFT fractional Fourier transform
DTFRFT discrete-time fractional Fourier transform
F FT operator
F α FRFT operator

~F α
DTFRFT operator

Fðu csc αÞFT (with its argument scaled by csc α) of f ðtÞ
~F ðu csc αÞDTFT (with its argument scaled by csc α) of f ½n�
FαðuÞ FRFT of f ðtÞ
~F αðuÞ DTFRFT of f ½n�
Θα continuous fractional convolution operator
Θ
s
α semi-discrete fractional convolution operator
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