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a b s t r a c t

This paper investigates the adaptive sensing for cooperative target tracking in three-
dimensional environments by multiple autonomous vehicles based on measurements
from time-difference-of-arrival (TDOA) sensors. An iterated filtering algorithm combined
with the Gauss–Newton method is applied to estimate the target location. By minimizing
the determinant of the estimation error covariance matrix, an adaptive sensing strategy is
developed. A gradient-based control law for each agent is proposed and a set of stationary
points for local optimum geometric configurations of the agents is given. The proposed
sensing strategy is further compared with other sensing strategies using different optim-
ization criteria such as the Cramer–Rao lower bound. Potential modifications of the
proposed sensing strategy is also discussed such as to include the formation control
of agents. Finally, the proposed sensing strategy is demonstrated and compared with
other sensing strategies by simulation, which shows that our method can provide good
performance with even only two agents, i.e., one measurement at each time.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Target localization and tracking have been very impor-
tant issues in the field of cooperative sensing and control by
autonomous vehicles [1]. Instead of pre-deploying a large
number of static sensor nodes covering a whole interested
region, the task of target tracking can be fulfilled by using
only one or serval mobile vehicles, which makes the system
deployment much easier. Since static sensor nodes cannot
change positions to improve its sensing performance dyna-
mically, mobile robots are more frequently used to obtain
the optimal sensing performance by autonomously and

cooperatively adjusting their positions and communication
topologies based on their knowledge about the targets [2,3].

In range or bearing based target tracking methods, the
geometric sensor configuration formed by sensors and target
can highly affect the tracking performance. In the literature,
the optimal two-dimensional relative sensor–target geometry
has been widely studied [4–6]. The Cramer–Rao lower bound
(CRLB) has been a commonly used criterion for the optimal
geometric configuration of sensors [4–10]. The optimal geo-
metric configuration of sensor–target for bearing-only target
localization is addressed with equal sensor to target ranges
for all sensors in Nardone et al. [5], Kadar [9] and with
arbitrary sensor to target ranges in Bishop et al. [6], Doğançay
and Hmam [8]. The optimal geometric sensor–target config-
uration for range-based target localization is addressed in
Bishop et al. [6], Martínez and Bullo [10]. The control of
mobile sensors to track mobile targets while maintaining the
optimal geometry is further investigated by minimizing the
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CRLB of target state estimate. However, the application of the
CRLB requires a sufficient number of sensors to guarantee the
invertibility of the Fisher information matrix. Some other
optimization criteria are also considered in Gustafsson and
Gunnarsson [4], such as a criterion based on the estimation
error covariance matrix which includes the prior estimation
information. In Huguenin and Rendas [11], the adaptive
sensing for target tracking by mobile sensors is further
addressed by minimizing the determinant of the estimation
error covariance matrix. However, only a suboptimal sensing
strategy is given, and the noises of different measurements
are assumed to be independent, which is not applicable to
cases such as the time-difference-of-arrival (TDOA) measure-
ments based localization and tracking. In Doğançay and
Hashemi-Sakhtsari [12], TDOA-based target tracking by a set
of static sensors is considered using the recursive least-
squares algorithm. In Zhou et al. [13], a local anchor-
positioning method based on rotational TDOA measurement
is proposed for building up an indoor position measurement
system with static sensor networks. In Huguenin and Rendas
[14], the adaptive sensing of a scalar environmental field by
a group of agents is considered, which requires that the
random measurement errors be bounded and gives asubop-
timal solution for distributed implementation. However,
the method cannot be applied where the measurement of
each agent is not scalar and the measurement error is
unbounded. For the estimation of target location, different
sorts of methods have been proposed, such as the conven-
tional extended Kalman filtering (EKF) method [15], iterated
Kalman filtering (IKF) method [16], nonlinear least-squares
method and maximum likelihood method [4]. A discussion
of the connections between these methods can be found in
Bell and Cathey [17]. The estimation of the time difference
of signal arrivals has been studied in Blandin et al. [18],
Dvorkind and Gannot [19].

In this paper, we investigate the adaptive sensing in three-
dimensional cooperative target tracking by multiple autono-
mous vehicles based on measurements from TDOA sensors.
The main contribution is that our method can be applied
with an arbitrary number of agents that produce at least one
measurement at each time. This decreases the cost of agent
deployment and alleviates the request for a sufficient number
of agents to make the Fisher information matrix invertible by
using the CRLB. First, we apply the framework of Kalman
filtering to iteratively estimate the target location which
incorporates the Gauss–Newton method. Then, an adaptive
sensing strategy is given by minimizing the determinant of
the estimation error covariance matrix, and a gradient-based
control law is derived for each agent to reach a local optimum
position. A set of stationary points for local optimum geo-
metric configurations of the agents is given. Furthermore, we
discuss the connections between different optimization cri-
teria including the CRLB. Potential modification of the algo-
rithm is also given such as to include the formation control of
agents for specific task requirement. The proposed adaptive
sensing strategy still can provide good tracking performance
with only two agents, i.e., with only one measurement
at each time, for estimation of a three-dimensional target
location.

The rest of the paper is organized as follows. In Section 2,
we introduce the sensing model and some basic assumptions.

An iterated estimation algorithm is given in Section 3.
In Section 4, an adaptive sensing strategy for target tracking
is proposed. The comparisons with other optimization criteria
and potential modifications are discussed in Section 5.
Simulation results are provided in Section 6. Section 7 is the
conclusion.

2. Basic definitions and assumptions

Consider a target at position sAR3, the dynamic model
of which is given by

skþ1 ¼ f ðsk; bk;wkÞ;
where k is an integer denoting the discrete time instant, sk
denotes the value of s evaluated at time k and bk is the
target motion control input. In general, bk is not known for
an uncooperative target although some prior information
about the input may be available. It can be estimated from
information such as estimated velocity and acceleration.
However, for the ease of expression, we assume that bk is
known, which in fact is not a limitation of our proposed
method. The wk is assumed to be a zero-mean white
Gaussian noise and E½wkwT

l � ¼ δklQk, where “T” denotes
the transpose operation and δkl is the Kronecker delta. Qk is
assumed to be positive definite for all kZ0.

The same observation model as given in Bishop et al.
[6] is applied in our research, i.e., at each time k, agent i at
position μi;k ¼ ½xi;k; yi;k; zi;k�TAR3 ði¼ 1;2;…;NÞ, paired with
agent j, obtains a TDOA measurement given by

ti;j;k ¼ ti;k�tj;k ¼
Jsk�μi;k J� Jsk�μj;k J

v
þυi;j;k;

where

ti;k ¼
Jsk�μi;k J

v
þɛi;k;

υi;j;k ¼ ɛi;k�ɛj;k:

J�J denotes the Euclidean norm of a vector or matrix,
vAR is the propagation speed of the signal emitted by the
target which can be normalized as 1, NZ2 is the total
number of agents and ti;k is the measurement of time of
arrival of a signal received by agent i during the k-th
sampling interval. ɛi;k is assumed to be a zero-mean white
Gaussian measurement noise subject to E½ɛi;kɛj;l� ¼ δijδklVk,
where Vk40 for all k40. Thus, it is straightforward to get
that υi;j;k is also a zero-mean white Gaussian noise with
E½υi;j;kυi;n;l� ¼ ðδjnþ1ÞδklVk.

Assuming that each agent has access to the information
of any other agent in the network through direct or multi-
hop communications, we only need to consider the TDOA
measurements taken by one agent, e.g., agent 1, paired
with all the other agents which form the measurement
vector

tk ¼ ½t1;2;k; t1;3;k;…; t1;N;k�T:
Defining hðs; μ1; μiÞ ¼ Js�μ1 J� Js�μi J ði¼ 2;3;…;NÞ and
the following augmented variables:

μ¼ ½μT1; μT2;…; μTN �T;
υ¼ ½υ1;2; υ1;3;…; υ1;N�T;
hðs; μÞ ¼ ½hðs; μ1; μ2Þ;…;hðs; μ1; μNÞ�T;
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