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a b s t r a c t

Existing convex relaxation-based approaches to reconstruction in compressed sensing
assume that noise in the measurements is independent of the signal of interest. We
consider the case of noise being linearly correlated with the signal and introduce a simple
technique for improving compressed sensing reconstruction from such measurements.
The technique is based on a linear model of the correlation of additive noise with
the signal. The modification of the reconstruction algorithm based on this model is very
simple and has negligible additional computational cost compared to standard recon-
struction algorithms, but is not known in existing literature. The proposed technique
reduces reconstruction error considerably in the case of linearly correlated measurements
and noise. Numerical experiments confirm the efficacy of the technique. The technique is
demonstrated with application to low-rate quantization of compressed measurements,
which is known to introduce correlated noise, and improvements in reconstruction error
compared to ordinary Basis Pursuit De-Noising of up to approximately 7 dB are observed
for 1 bit/sample quantization. Furthermore, the proposed method is compared to Binary
Iterative Hard Thresholding which it is demonstrated to outperform in terms of reconstruc-
tion error for sparse signals with a number of non-zero coefficients greater than
approximately 1/10th of the number of compressed measurements.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the recently emerged field of compressed sensing,
one considers linear measurements y of a sparse vector x,
possibly affected by noise as

y¼ Axþn; ð1Þ

where the measurements yARM�1, the sparse vector
xARN�1, the additive noise nARM�1, the system matrix
AARM�N , and M5N [1–3]. A is generally the product of
a measurement matrix and a dictionary matrix: A¼ΦΨ,
where ΦACM�N , ΨACN�N . For simplicity, we assume that

Ψ is an orthonormal basis although more general diction-
aries are indeed possible [4].

The essence of compressed sensing, as Donoho et al.
have shown in [1,2], is that the under-determined equa-
tion system (1) can be solved provided that:

1. The vector x is sparse; i.e., only few (K) elements in x
are non-zero:

K ¼ jfxijxia0; i¼ 1;…;Ngj ð2Þ
x can also be approximated sparsely if it is compres-
sible [3, Section 3.3], meaning that its coefficients
sorted by magnitude decay rapidly to zero.

2. The system matrix A obeys the Restricted Isometry
Property (RIP) with isometry constant δK40, defined
as follows:

ð1�δK Þ‖x‖2ℓ2 r‖Ax‖2ℓ2 r ð1þδK Þ‖x‖2ℓ2 ; ð3Þ
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for any at most K-sparse vector x such that [5]

δK þδ2K þδ3Ko1: ð4Þ

This holds with high probability when Φ is generated
with zero-mean independent identically distributed (i.i.d.)
Gaussian entries with variance 1=M. Note that (3) and (4)
are sufficient but not necessary conditions, and rather
conservative conditions indeed, as shown in [6].
Conditions (3) and (4) lead to the following sufficient
amount of measurements M for Gaussian measurement
matrices Φ [7]:

MZCK log
N
M

� �
; ð5Þ

where C is a fairly small constant which can be calculated
as a function of M=N [5].

Given the measurements y, the unknown sparse vector
x can be reconstructed by solving the following convex
optimization problem [3, Section 4]:

x̂ ¼ argmin
u:‖y�Au‖2 r ε

‖u‖1; ð6Þ

where the fidelity constraint ‖y�Au‖2rε ensures con-
sistency with the observed measurements to within some
margin of error, ε, which is chosen sufficiently large to
accommodate the error n and/or approximation error in
the case of compressible signals. The form of the optimiza-
tion problem in (6) is known as Least Absolute Shrinkage
and Selection Operator (LASSO) [8] or Basis Pursuit
De-Noising (BPDN) [9] and also comes in other variants
such as the Dantzig selector [10]. In addition to the convex
optimization approach to reconstruction in compressed
sensing, there exist several iterative/greedy algorithms
such as Iterative Hard Thresholding (IHT) [11], or Subspace
Pursuit (SP) [12] and Compressive Sampling Matching
Pursuit (COSAMP) [13] as well as the more generalized
incarnation of the two latter, Two-Stage Thresholding
(TST) [14]. We generally refer to such convex or greedy
approaches as reconstruction algorithms. The reconstruc-
tion algorithms generally assume the noise to be white
and independent of the measurements before noise
y ¼ Ax. In particular, to the best of the authors' knowledge,
the case of measurement noise being linearly correlated
with the measurements has not been treated in the
existing literature. Such correlation arises in for example
the case of low-resolution quantization. As we demon-
strate in Section 2, this case poses a problem for the
accuracy of the found solution x̂ . More special cases of
correlated noise arising from Poisson measurements or
quantization of measurements have, however, been trea-
ted in for example [15–17].

In this paper, we propose a simple yet efficient
approach to alleviating the problem of linear correlation
between the measurements before noise y and the noise
n. Our proposal boils down to a simple scaling of the
solution x̂ . Through numerical experiments we demon-
strate how linearly correlated measurements and noise
adversely affect the reconstruction error and demonstrate
how our proposal improves the estimates considerably.

As an application example, we demonstrate the pro-
posed approach in the case of low-rate scalar quantization
of the measurements y which can be observed to intro-
duce the mentioned linearly correlated measurement
noise. We demonstrate how a well-known linear model
used for modeling such correlation in scalar quantization
is equivalent to the model of correlated measurement
noise considered in this work.

The paper is structured as follows: Section 2 introduces
the considered model of linear correlation between com-
pressed measurements and noise and proposes a solution
to enhance reconstruction under these conditions, Section 3
describes simulations conducted to evaluate the perfor-
mance of the proposed approach compared to a traditional
approach, Section 4 presents the results of these numerical
simulations, Section 5 provides discussions of some of the
presented results, and Section 6 concludes the paper.

2. Methodology

2.1. Correlated measurements and noise

We consider additive measurement noise n which is
correlated with the measurements before noise y . We
model the correlation by the linear model:

y¼ αAxþw; ð7Þ
where w is assumed an additive white noise uncorrelated
with x and 0oαr1 where α¼ 1 covers the ordinary
case of uncorrelated measurement noise. A is the product
of a measurement matrix Φ with i.i.d. Gaussian entries
�N ð0;1=MÞ and an orthonormal dictionary matrix Ψ. The
model (7) results in the following additive noise term:

n¼ y�y ¼ αAxþw�Ax¼ ðα�1ÞAxþw ð8Þ
We define y ¼ Ax to signify the measurements before
introduction of additive noise. It is readily seen from (8)
that n is correlated with x. The noise variance is

s2n ¼
1
M

E nTn
� �¼ 1

M
ððα�1Þ2E½yTy �þE½wTw�Þ; ð9Þ

which can be calculated by assuming that s2y ¼ ð1=MÞE½yTy �
and s2w ¼ ð1=MÞE½wTw� are known or can be estimated.
For example, we show an example for s2w in the case of
quantization in Section 2.5, (21).

The specific problem caused by correlated measure-
ments and noise as modeled by (7) is that the noise itself is
partly sparse in the same dictionary as the signal of
interest, x. Intuitively, this causes a solution x̂ as given
by, e.g., (6) to adapt to part of the noise as well as the signal
of interest, unless steps are taken to mitigate this effect.

2.2. Proposed approach

Using the model in (7), we propose the following
reconstruction of the sparse vector x instead of the
standard approach in (6). Eq. (7) motivates replacing the
system matrix A by its scaled version αA. We exemplify
this approach by applying it in the BPDN reconstruction
formulation as below. Replacing A by αA in the standard
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